Mapping of (2+1)-dimensional Kardar-Parisi-Zhang growth onto a driven lattice gas model of dimers

被引:29
作者
Odor, Geza [1 ]
Liedke, Bartosz [2 ]
Heinig, Karl-Heinz [2 ]
机构
[1] Res Inst Tech Phys & Mat Sci, H-1525 Budapest, Hungary
[2] Forschungszentrum Dresden Rossendorf, Inst Ion Beam Phys & Mat Res, D-01314 Dresden, Germany
来源
PHYSICAL REVIEW E | 2009年 / 79卷 / 02期
关键词
lattice gas; reaction-diffusion systems; STATISTICAL-MECHANICS; BALLISTIC DEPOSITION; UNIVERSALITY CLASSES; HYPERCUBE-STACKING; SURFACE; INVARIANCE; EQUATION;
D O I
10.1103/PhysRevE.79.021125
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We show that a (2+1)-dimensional discrete surface growth model exhibiting Kardar-Parisi-Zhang (KPZ) class scaling can be mapped onto a two-dimensional conserved lattice gas model of directed dimers. The KPZ height anisotropy in the surface model corresponds to a driven diffusive motion of the lattice gas dimers. We confirm by numerical simulations that the scaling exponents of the dimer model are in agreement with those of the (2+1)-dimensional KPZ class. This opens up the possibility of analyzing growth models via reaction-diffusion models, which allow much more efficient computer simulations.
引用
收藏
页数:5
相关论文
共 40 条
  • [1] [Anonymous], 1995, FRACTAL CONCEPT SURF, DOI DOI 10.1017/CBO9780511599798
  • [2] Baxter R J., 2007, Exactly Solved Models in Statistical Mechanics
  • [3] ROUGHENING TRANSITIONS AND THE ZERO-TEMPERATURE TRIANGULAR ISING ANTIFERROMAGNET
    BLOTE, HWJ
    HILHORST, HJ
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1982, 15 (11): : L631 - L637
  • [4] THEORY OF RIPPLE TOPOGRAPHY INDUCED BY ION-BOMBARDMENT
    BRADLEY, RM
    HARPER, JME
    [J]. JOURNAL OF VACUUM SCIENCE & TECHNOLOGY A-VACUUM SURFACES AND FILMS, 1988, 6 (04): : 2390 - 2395
  • [5] Universality classes of the Kardar-Parisi-Zhang equation
    Canet, L.
    Moore, M. A.
    [J]. PHYSICAL REVIEW LETTERS, 2007, 98 (20)
  • [6] Upper critical dimension, dynamic exponent, and scaling functions in the mode-coupling theory for the Kardar-Parisi-Zhang equation
    Colaiori, F
    Moore, MA
    [J]. PHYSICAL REVIEW LETTERS, 2001, 86 (18) : 3946 - 3949
  • [7] THE SURFACE STATISTICS OF A GRANULAR AGGREGATE
    EDWARDS, SF
    WILKINSON, DR
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF LONDON SERIES A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 1982, 381 (1780): : 17 - 31
  • [8] Nonequilibrium statistical mechanics of the zero-range process and related models
    Evans, MR
    Hanney, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 2005, 38 (19): : R195 - R240
  • [9] Formation of ordered nanoscale semiconductor dots by ion sputtering
    Facsko, S
    Dekorsy, T
    Koerdt, C
    Trappe, C
    Kurz, H
    Vogt, A
    Hartnagel, HL
    [J]. SCIENCE, 1999, 285 (5433) : 1551 - 1553
  • [10] SCALING OF THE ACTIVE ZONE IN THE EDEN PROCESS ON PERCOLATION NETWORKS AND THE BALLISTIC DEPOSITION MODEL
    FAMILY, F
    VICSEK, T
    [J]. JOURNAL OF PHYSICS A-MATHEMATICAL AND GENERAL, 1985, 18 (02): : L75 - L81