Integral representation for Borel sum of divergent solution to a certain non-Kowalevski type equation

被引:17
作者
Ichinobe, K [1 ]
机构
[1] Nagoya Univ, Grad Sch Math, Nagoya, Aichi 4648602, Japan
关键词
D O I
10.2977/prims/1145476043
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We shall develop the theory of Borel summability or k-summability for a divergent solution of the Cauchy problem for non-Kowalevskian equations of quasi-homogeneous type. Precisely, we first establish necessary and sufficient conditions for the Borel summability in terms of the Cauchy data (cf. Theorem 2.1), and next we give an integral representation of the Borel sum by using kernel functions which are given by Meijer G-function or the generalized hypergeometric functions of confluent type (cf. Theorems 2.3 and 2.6).
引用
收藏
页码:657 / 693
页数:37
相关论文
共 16 条
[1]  
[Anonymous], 1996, SINGULAR NONLINEAR P
[2]   Divergent solutions of the heat equation: On an article of Lutz, Miyake and Schafke [J].
Balser, W .
PACIFIC JOURNAL OF MATHEMATICS, 1999, 188 (01) :53-63
[3]  
BALSER W, 1994, SPRINGER SERIES NOTE, V1582
[4]  
BALSER W, 1999, ACTA SCI MATH SZEGED, V65, P543
[5]  
BUCHHOLZ H, 1953, KONFLUENTE HYPERGEOM
[6]  
ERDELYI A, 1953, HIGHER TRNASCENDENTA, V1
[7]   The Borel sum of divergent Barnes hypergeometric series and its application to a partial differential equation [J].
Ichinobe, K .
PUBLICATIONS OF THE RESEARCH INSTITUTE FOR MATHEMATICAL SCIENCES, 2001, 37 (01) :91-117
[8]  
Iwasaki K., 1991, From Gauss to Painleve, VE16
[9]  
Luke YL, 1969, SPECIAL FUNCTIONS TH
[10]   On the Borel summability of divergent solutions of the heat equation [J].
Lutz, DA ;
Miyake, M ;
Schäfke, R .
NAGOYA MATHEMATICAL JOURNAL, 1999, 154 :1-29