Positivity-preserving C2 rational cubic spline interpolation

被引:24
作者
Abbas, Muhammad [1 ]
Abd Majid, Ahmad [1 ]
Awang, Mohd Nain Hj [2 ]
Ali, Jamaludin Md [1 ]
机构
[1] Univ Sains Malaysia, Sch Math Sci, George Town 11800, Malaysia
[2] Univ Sains Malaysia, Sch Distance Educ, George Town 11800, Malaysia
来源
SCIENCEASIA | 2013年 / 39卷 / 02期
关键词
shape preserving interpolation; data visualization; positive data; shape parameters; parametric continuity;
D O I
10.2306/scienceasia1513-1874.2013.39.208
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
This work addresses the shape preserving interpolation problem for visualization of positive data. A piecewise rational function in cubic/quadratic form involving three shape parameters is presented. Simple data dependent conditions for a single shape parameter are derived to preserve the inherited shape feature (positivity) of data. The remaining two shape parameters are left free for the designer to modify the shape of positive curves as per industrial needs. The interpolant is not only C-2, local, computationally economical, but it is also a visually pleasant and smooth in comparison with existing schemes. Several numerical examples are supplied to illustrate the proposed interpolant.
引用
收藏
页码:208 / 213
页数:6
相关论文
共 16 条
[1]  
Abbas M, 2013, INT J COMPU IN PRESS
[2]  
Abbas M., 2012, APPL MATH SCI, V6, P291
[3]  
Abbas M, 2012, WULFERNIA J, V19, P44
[4]   Monotonicity-preserving C2 rational cubic spline for monotone data [J].
Abbas, Muhammad ;
Abd Majid, Ahmad ;
Ali, Jamaludin Md. .
APPLIED MATHEMATICS AND COMPUTATION, 2012, 219 (06) :2885-2895
[5]   Point control of the interpolating curve with a rational cubic spline [J].
Bao, Fangxun ;
Sun, Qinghua ;
Duan, Qi .
JOURNAL OF VISUAL COMMUNICATION AND IMAGE REPRESENTATION, 2009, 20 (04) :275-280
[6]   PRESERVING POSITIVITY USING PIECEWISE CUBIC INTERPOLATION [J].
BUTT, S ;
BRODLIE, KW .
COMPUTERS & GRAPHICS, 1993, 17 (01) :55-64
[7]   Boundary-valued shape-preserving interpolating splines [J].
Costantini, P .
ACM TRANSACTIONS ON MATHEMATICAL SOFTWARE, 1997, 23 (02) :229-251
[8]   A new C2 rational interpolation based on function values and constrained control of the interpolant curves [J].
Duan, Q ;
Wang, LQ ;
Twizell, EH .
APPLIED MATHEMATICS AND COMPUTATION, 2005, 161 (01) :311-322
[9]  
Farin GE, 2002, CURVES SURFACES CAGD, P102
[10]   SHAPE-PRESERVING C2-CUBIC POLYNOMIAL INTERPOLATING SPLINES [J].
FIOROT, JC ;
TABKA, J .
MATHEMATICS OF COMPUTATION, 1991, 57 (195) :291-298