Automatic Segmentation and Quantification of TB Scale Volumetric Murine Brain Vasculature Data

被引:0
|
作者
Vemuri, Venkata. N. P. [1 ]
Jackson, Hunter [1 ]
Scott, Katherine [1 ]
机构
[1] 3Scan, San Francisco, CA 94110 USA
关键词
Knife Edge Scanning Microscopy(KESM); vasculature; quantification; validation; DISEASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emerging serial section light microscopy platforms, like Knife-Edge Scanning Microscopy (KESM), generate high-resolution data sets at a rate exceeding 1 TB /cm3 of tissue, and can generate 3D voxel data of an entire mouse organ like a brain or kidney. Not only is this technique much faster than imaging slides manually on a traditional microtome it generates much larger and better statistically sampled data sets. These large datasets require new and innovative infrastructure to support the development and deployment of automated segmentation algorithms. In this paper we briefly describe the KESM, our analysis infrastructure, and our validation procedures for automated tissue segmentation routines. We demonstrate multiparametric quantification of vasculature across large sample volumes and the validation of segmentation of these volumes using both trained pathologists and un-trained workers. This type of validated vascular analysis is useful for understanding tumor angiogenesis, arteriosclerosis, vasculopathies, and neurodegenerative diseases. To that end, recent studies have shown an increase in blood vessel density & reduction in blood vessel diameter in the striatum of mice with Huntington's Disease [1,2]. We show that our validated mouse model recapitulate and expand on these findings across larger volumes.
引用
收藏
页码:3263 / 3266
页数:4
相关论文
共 50 条
  • [31] FreeSurfer Automatic Brain Segmentation Adaptation to Medial Temporal Lobe Structures: Volumetric Assessment and Diagnosis of Mild Cognitive Impairment
    Insausti, R.
    Rincon, M.
    Diaz-Lopez, E.
    Artacho-Perula, E.
    Mansilla, F.
    Florensa, J.
    Gonzalez-Moreno, C.
    Alvarez-Linera, J.
    Garcia, S.
    Peraita, H.
    Pais, E.
    Insausti, A. M.
    NEW CHALLENGES ON BIOINSPIRED APPLICATIONS: 4TH INTERNATIONAL WORK-CONFERENCE ON THE INTERPLAY BETWEEN NATURAL AND ARTIFICIAL COMPUTATION, IWINAC 2011, PART II, 2011, 6687 : 112 - 119
  • [32] Development of a semi-automatic segmentation technique based on mean magnetic resonance imaging intensity thresholding for volumetric quantification of plexiform neurofibromas
    Kiaei, Dorsa Sadat
    El-Jalbout, Ramy
    Decarie, Jean-Claude
    Perreault, Sebastien
    Dehaes, Mathieu
    HELIYON, 2024, 10 (01)
  • [33] Automatic segmentation and volumetric quantification of white matter hyperintensities on fluid-attenuated inversion recovery images using the extreme value distribution
    Wang, Rui
    Li, Chao
    Wang, Jie
    Wei, Xiaoer
    Li, Yuehua
    Zhu, Yuemin
    Zhang, Su
    NEURORADIOLOGY, 2015, 57 (03) : 307 - 320
  • [34] Automatic segmentation and volumetric quantification of white matter hyperintensities on fluid-attenuated inversion recovery images using the extreme value distribution
    Rui Wang
    Chao Li
    Jie Wang
    Xiaoer Wei
    Yuehua Li
    Yuemin Zhu
    Su Zhang
    Neuroradiology, 2015, 57 : 307 - 320
  • [35] A Simple Technique for Three-Dimensional Imaging and Segmentation of Brain Vasculature Using Fast Free-of-Acrylamide Clearing Tissue in Murine
    Khoradmehr, Arezoo
    Mazaheri, Fahime
    Anvari, Morteza
    Tamadon, Amin
    CELL JOURNAL, 2019, 21 (01) : 49 - 56
  • [36] Automatic Segmentation of Brain Tumor Parts from MRI Data Using a Random Forest Classifier
    Csaholczi, Szabolcs
    Kovacs, Levente
    Szilagyi, Laszlo
    2021 IEEE 19TH WORLD SYMPOSIUM ON APPLIED MACHINE INTELLIGENCE AND INFORMATICS (SAMI 2021), 2021, : 471 - 475
  • [37] TwoPath U-Net for Automatic Brain Tumor Segmentation from Multimodal MRI Data
    Kaewrak, Keerati
    Soraghan, John
    Di Caterina, Gaetano
    Grose, Derek
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT II, 2021, 12659 : 300 - 309
  • [38] AUTOMATIC SEGMENTATION OF RARE PEDIATRIC BRAIN TUMORS USING KNOWLEDGE TRANSFER FROM ADULT DATA
    Liu, Xinyang
    Bonner, Erin R.
    Jiang, Zhifan
    Roth, Holger R.
    Anwar, Syed Muhammad
    Packer, Roger J.
    Bornhorst, Miriam
    Linguraru, Marius George
    2023 IEEE 20TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING, ISBI, 2023,
  • [39] Automatic brain tissue segmentation method from MRI T1-weighted data
    Miura, Naoki
    Takahashi, Makoto
    Kawashima, Ryuta
    Kitamura, Masaharu
    FUTURE MEDICAL ENGINEERING BASED ON BIONANOTECHNOLOGY, PROCEEDINGS, 2006, : 1065 - +
  • [40] Regional SUV quantification in hybrid PET/MR, a comparison of two atlas-based automatic brain segmentation methods
    Ruan, Weiwei
    Sun, Xun
    Hu, Xuehan
    Liu, Fang
    Hu, Fan
    Guo, Jinxia
    Zhang, Yongxue
    Lan, Xiaoli
    EJNMMI RESEARCH, 2020, 10 (01)