Automatic Segmentation and Quantification of TB Scale Volumetric Murine Brain Vasculature Data

被引:0
|
作者
Vemuri, Venkata. N. P. [1 ]
Jackson, Hunter [1 ]
Scott, Katherine [1 ]
机构
[1] 3Scan, San Francisco, CA 94110 USA
关键词
Knife Edge Scanning Microscopy(KESM); vasculature; quantification; validation; DISEASE;
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Emerging serial section light microscopy platforms, like Knife-Edge Scanning Microscopy (KESM), generate high-resolution data sets at a rate exceeding 1 TB /cm3 of tissue, and can generate 3D voxel data of an entire mouse organ like a brain or kidney. Not only is this technique much faster than imaging slides manually on a traditional microtome it generates much larger and better statistically sampled data sets. These large datasets require new and innovative infrastructure to support the development and deployment of automated segmentation algorithms. In this paper we briefly describe the KESM, our analysis infrastructure, and our validation procedures for automated tissue segmentation routines. We demonstrate multiparametric quantification of vasculature across large sample volumes and the validation of segmentation of these volumes using both trained pathologists and un-trained workers. This type of validated vascular analysis is useful for understanding tumor angiogenesis, arteriosclerosis, vasculopathies, and neurodegenerative diseases. To that end, recent studies have shown an increase in blood vessel density & reduction in blood vessel diameter in the striatum of mice with Huntington's Disease [1,2]. We show that our validated mouse model recapitulate and expand on these findings across larger volumes.
引用
收藏
页码:3263 / 3266
页数:4
相关论文
共 50 条
  • [1] Keynote: Automatic Segmentation and Quantification of TB Scale Volumetric Murine Brain Vasculature Data
    Scott, Katherine
    Vemuri, Venkata. N. P.
    Jackson, Hunter
    2018 IEEE INTERNATIONAL CONFERENCE ON BIG DATA (BIG DATA), 2018, : 3255 - 3255
  • [2] Brain Volumetric Alterations in Preclinical HIV-Associated Neurocognitive Disorder Using Automatic Brain Quantification and Segmentation Tool
    Li, Ruili
    Qi, Yu
    Shi, Lin
    Wang, Wei
    Zhang, Aidong
    Luo, Yishan
    Kung, Wing Kit
    Jiao, Zengxin
    Liu, Guangxue
    Li, Hongjun
    Zhang, Longjiang
    FRONTIERS IN NEUROSCIENCE, 2021, 15
  • [3] AUTOMATIC SEGMENTATION OF THE PLACENTA AND ITS PERIPHERAL VASCULATURE IN VOLUMETRIC ULTRASOUND FOR TTTS FETAL SURGERY
    Torrents-Barrena, Jordina
    Piella, Gemma
    Masoller, Narcis
    Gratacos, Eduard
    Eixarch, Elisenda
    Ceresa, Mario
    Gonzalez Ballester, Miguel A.
    2019 IEEE 16TH INTERNATIONAL SYMPOSIUM ON BIOMEDICAL IMAGING (ISBI 2019), 2019, : 772 - 775
  • [4] Automatic Brain Tumor Segmentation in Multispectral MRI Volumetric Records
    Szilagyi, Laszlo
    Lefkovits, Laszlo
    Iantovics, Barna
    Iclanzan, David
    Benyo, Balazs
    NEURAL INFORMATION PROCESSING, ICONIP 2015, PT IV, 2015, 9492 : 174 - 181
  • [5] Automatic segmentation of mitochondria and endolysosomes in volumetric electron microscopy data
    Mekuc, Manca Zerovnik
    Bohak, Ciril
    Hudoklin, Samo
    Kim, Byeong Hak
    Romih, Rok
    Kim, Min Young
    Marolt, Matija
    COMPUTERS IN BIOLOGY AND MEDICINE, 2020, 119
  • [6] Volumetric glioma quantification: comparison of manual and semi-automatic tumor segmentation for the quantification of tumor growth
    Odland, Audun
    Server, Andres
    Saxhaug, Cathrine
    Breivik, Birger
    Groote, Rasmus
    Vardal, Jonas
    Larsson, Christopher
    Bjornerud, Atle
    ACTA RADIOLOGICA, 2015, 56 (11) : 1396 - 1403
  • [7] Automatic segmentation and volumetric analysis of intracranial hemorrhages in brain CT images
    Yuce, Murat
    Ozturk, Samet
    Pamuk, Gul Gizem
    Varlik, Candan
    Cimilli, Ahmet Tan
    EUROPEAN JOURNAL OF RADIOLOGY, 2025, 184
  • [8] Applicability of semi-automatic segmentation for volumetric analysis of brain lesions
    Heinonen, T
    Dastidar, P
    Eskola, H
    Frey, H
    Ryymin, P
    Laasonen, E
    JOURNAL OF MEDICAL ENGINEERING & TECHNOLOGY, 1998, 22 (04) : 173 - 178
  • [9] Applicability of semi-automatic segmentation for volumetric analysis of brain lesions
    Heinonen, T.
    Dastidar, P.
    Eskola, H.
    Frey, H.
    Ryymin, P.
    Laasonen, E.
    Journal of Medical Engineering and Technology, 1998, 22 (04): : 173 - 178
  • [10] Automatic Brain Tumor Segmentation with Scale Attention Network
    Yuan, Yading
    BRAINLESION: GLIOMA, MULTIPLE SCLEROSIS, STROKE AND TRAUMATIC BRAIN INJURIES (BRAINLES 2020), PT I, 2021, 12658 : 285 - 294