Multiple trait genetic analysis of underlying biological variables of production functions

被引:46
作者
Varona, L
Moreno, C
Cortes, LAG
Altarriba, J
机构
[1] U. Genet. Cuantitativa Mejora Anim., Facultad de Veterinaria, Universidad de Zaragoza, 50013 Saragossa
来源
LIVESTOCK PRODUCTION SCIENCE | 1997年 / 47卷 / 03期
关键词
beef cattle; Gibbs sampling; production functions; Bayesian analysis;
D O I
10.1016/S0301-6226(96)01415-7
中图分类号
S8 [畜牧、 动物医学、狩猎、蚕、蜂];
学科分类号
0905 ;
摘要
A Bayesian procedure to analyze performance data from production functions is presented. The method implies the consideration of each parameter of the production function as a different trait. The systematic effects and genetic relationship between animals are taken into account in the adjustment of production for each animal. The method weights all possible sources of information. In this sense, it allows estimation of the parameters of production functions with only one data along the production cycle and to reduce the influence of outliers. Under analysis, marginal posterior distributions of the function parameters, breeding values, systematic effects and (co)variance components were obtained using the Gibbs sampling algorithm. The procedure requires the definition of the joint posterior distribution to be generalized to any production function. From this joint posterior distribution, the full set of posterior conditional distributions needed for the Gibbs sampling algorithm can be easily obtained. (C) 1997 Published by Elsevier Science B.V.
引用
收藏
页码:201 / 209
页数:9
相关论文
共 22 条