A Functional Genomics Approach Reveals CHE as a Component of the Arabidopsis Circadian Clock

被引:371
|
作者
Pruneda-Paz, Jose L. [1 ]
Breton, Ghislain [1 ]
Para, Alessia [1 ]
Kay, Steve A. [1 ]
机构
[1] Univ Calif San Diego, Div Biol Sci, Sect Cell & Dev Biol, La Jolla, CA 92093 USA
关键词
GENE-EXPRESSION; RHYTHMS; TOC1; PLANTS; REGULATOR; GROWTH;
D O I
10.1126/science.1167206
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
Transcriptional feedback loops constitute the molecular circuitry of the plant circadian clock. In Arabidopsis, a core loop is established between CCA1 and TOC1. Although CCA1 directly represses TOC1, the TOC1 protein has no DNA binding domains, which suggests that it cannot directly regulate CCA1. We established a functional genomic strategy that led to the identification of CHE, a TCP transcription factor that binds specifically to the CCA1 promoter. CHE is a clock component partially redundant with LHY in the repression of CCA1. The expression of CHE is regulated by CCA1, thus adding a CCA1/CHE feedback loop to the Arabidopsis circadian network. Because CHE and TOC1 interact, and CHE binds to the CCA1 promoter, a molecular linkage between TOC1 and CCA1 gene regulation is established.
引用
收藏
页码:1481 / 1485
页数:5
相关论文
共 50 条
  • [2] A functional genomics strategy reveals rora as a component of the mammalian circadian clock
    Sato, TK
    Panda, S
    Miraglia, LJ
    Reyes, TM
    Rudic, RD
    McNamara, P
    Naik, KA
    Fitzgerald, GA
    Kay, SA
    Hogenesch, JB
    NEURON, 2004, 43 (04) : 527 - 537
  • [3] A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock
    Yamada, Rikuhiro
    Matsumoto, Akira
    Ukai, Maki T.
    Houl, Jerry
    Uno, Kenichiro
    Kasukawa, Takeya
    Dauwalder, Brigitte
    Itoh, Taichi
    Hardin, Paul
    Tanimura, Teiichi
    Ueda, Hiroki
    NEUROSCIENCE RESEARCH, 2008, 61 : S33 - S33
  • [4] A functional genomics strategy reveals clockwork orange as a transcriptional regulator in the Drosophila circadian clock
    Matsumoto, Akira
    Ukai-Tadenuma, Maki
    Yamada, Rikuhiro G.
    Houl, Jerry
    Uno, Kenichiro D.
    Kasukawa, Takeya
    Dauwalder, Brigitte
    Itoh, Taichi Q.
    Takahashi, Kuniaki
    Ueda, Ryu
    Hardin, Paul E.
    Tanimura, Teiichi
    Ueda, Hiroki R.
    GENES & DEVELOPMENT, 2007, 21 (13) : 1687 - 1700
  • [5] BROTHER OF LUX ARRHYTHMO Is a Component of the Arabidopsis Circadian Clock
    Dai, Shunhong
    Wei, Xiaoping
    Pei, Liping
    Thompson, Rebecca L.
    Liu, Yi
    Heard, Jacqueline E.
    Ruff, Thomas G.
    Beachy, Roger N.
    PLANT CELL, 2011, 23 (03): : 961 - 972
  • [6] Enhancer trapping reveals widespread circadian clock transcriptional control in Arabidopsis
    Michael, TP
    McClung, CR
    PLANT PHYSIOLOGY, 2003, 132 (02) : 629 - 639
  • [7] A Functional Connection between the Circadian Clock and Hormonal Timing in Arabidopsis
    Singh, Manjul
    Mas, Paloma
    GENES, 2018, 9 (12)
  • [8] SKIP Is a Component of the Spliceosome Linking Alternative Splicing and the Circadian Clock in Arabidopsis
    Wang, Xiaoxue
    Wu, Fangming
    Xie, Qiguang
    Wang, Huamei
    Wang, Ying
    Yue, Yanling
    Gahura, Ondrej
    Ma, Shuangshuang
    Liu, Lei
    Cao, Ying
    Jiao, Yuling
    Puta, Frantisek
    McClung, C. Robertson
    Xu, Xiaodong
    Ma, Ligeng
    PLANT CELL, 2012, 24 (08): : 3278 - 3295
  • [9] Unraveling the circadian clock in Arabidopsis
    Wang, Xiaoxue
    Ma, Ligeng
    PLANT SIGNALING & BEHAVIOR, 2013, 8 (02)
  • [10] A molecular genetic approach to understanding the circadian clock in Arabidopsis.
    Somers, DE
    Devlin, PA
    Kay, SA
    PHOTOCHEMISTRY AND PHOTOBIOLOGY, 1999, 69 : 6S - 7S