A uniformly convergent finite difference scheme for a singularly perturbed semilinear equation

被引:38
作者
Farrell, PA
Miller, JJH
ORiordan, E
Shishkin, GI
机构
[1] TRINITY COLL DUBLIN,DEPT MATH,DUBLIN 2,IRELAND
[2] DUBLIN CITY UNIV,SCH MATH SCI,DUBLIN 9,IRELAND
[3] RUSSIAN ACAD SCI,INST MATH & MECH,EKATERINBURG,RUSSIA
关键词
semilinear boundary value problem; singular perturbation; finite-difference scheme; piecewise uniform mesh;
D O I
10.1137/0733056
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Boundary value problems for singularly perturbed semilinear elliptic equations are considered. Special piecewise-uniform meshes are constructed which yield accurate numerical solutions irrespective of the value of the small parameter. Numerical methods composed of standard monotone finite difference operators and these piecewise-uniform meshes are shown theoretically to be uniformly (with respect to the singular perturbation parameter) convergent. Numerical results are also presented, which indicate that in practice the method is first-order accurate.
引用
收藏
页码:1135 / 1149
页数:15
相关论文
共 25 条
[1]  
[Anonymous], 1991, COMPUTATIONAL METHOD
[2]   INADEQUACY OF 1ST-ORDER UPWIND DIFFERENCE-SCHEMES FOR SOME RECIRCULATING-FLOWS [J].
BRANDT, A ;
YAVNEH, I .
JOURNAL OF COMPUTATIONAL PHYSICS, 1991, 93 (01) :128-143
[3]  
Chang K. W., 1984, APPL MATH SCI, V56
[4]  
Doolan E.P., 1980, Uniform Numerical Methods for Problems with Initial and Boundary Layers
[5]   NUMERICAL-METHOD FOR BOUNDARY-LAYERS WITH BLOWING - EXPONENTIAL BOX SCHEME [J].
ELMISTIKAWY, TM ;
WERLE, MJ .
AIAA JOURNAL, 1978, 16 (07) :749-751
[6]  
FARRELL PA, IN PRESS NONEXISTENC
[7]  
FARRELL PA, 1991, 13TH P IMACS WORLD C, P501
[8]  
Ilin AM, 1969, MAT ZAMETKI, V6, P237, DOI DOI 10.1007/BF01093706
[9]  
Ladyzhenskaya O. A., 1973, LINEAR QUASILINEAR E
[10]  
LISEIKIN VD, 1993, CHISL METODY MECHANI, V14, P98