A Kernel Logistic Neural Network based on Restricted Boltzmann Machine

被引:0
作者
Lv, Qiuxia [1 ]
Wang, Degang [1 ]
Li, Hongxing [1 ]
Song, Wenyan [2 ]
Chen, C. L. Philip [3 ]
Lin, Hongli [4 ]
机构
[1] Dalian Univ Technol, Sch Control Sci & Engn, Dalian 116024, Peoples R China
[2] Dongbei Univ Finance & Econ, Sch Math, Dalian 116025, Peoples R China
[3] Univ Macau, Fac Sci & Technol, Taipa, Macao, Peoples R China
[4] Dalian Med Univ, Dept Arephrol, Affiliated Hosp 1, 222 Zhongshan Rd, Dalian, Peoples R China
来源
IEEE ICCSS 2016 - 2016 3RD INTERNATIONAL CONFERENCE ON INFORMATIVE AND CYBERNETICS FOR COMPUTATIONAL SOCIAL SYSTEMS (ICCSS) | 2016年
关键词
kernel logistic neural network; restricted Boltzmann machine; principal component analysis; ridge regularization; maximum likelihood estimate; REGRESSION; CLASSIFICATION;
D O I
暂无
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
A multi-class classification technique which combines kernel logistic neural network (KLNN) and restricted Boltzmann machine (RBM), called KLNN-RBM, is designed. The principal component analysis (PCA) is applied to determine the dimension of the kernel function. The initial weights and thresholds of this model are obtained by RBM. Then, the maximum likelihood estimate with a ridge regularization term and a new stochastic gradient descent method with a scaling factor are used to optimize the parameters in order to realize the multi-class classification. Some numerical simulations illustrate the validity of the proposed method.
引用
收藏
页码:1 / 6
页数:6
相关论文
共 18 条
  • [1] Biganzoli E, 1998, STAT MED, V17, P1169, DOI 10.1002/(SICI)1097-0258(19980530)17:10<1169::AID-SIM796>3.3.CO
  • [2] 2-4
  • [3] Fuzzy Restricted Boltzmann Machine for the Enhancement of Deep Learning
    Chen, C. L. Philip
    Zhang, Chun-Yang
    Chen, Long
    Gan, Min
    [J]. IEEE TRANSACTIONS ON FUZZY SYSTEMS, 2015, 23 (06) : 2163 - 2173
  • [4] Direct Kernel Perceptron (DKP): Ultra-fast kernel ELM-based classification with non-iterative closed-form weight calculation
    Fernandez-Delgado, Manuel
    Cernadas, Eva
    Barro, Senen
    Ribeiro, Jorge
    Neves, Jose
    [J]. NEURAL NETWORKS, 2014, 50 : 60 - 71
  • [5] A fast learning algorithm for deep belief nets
    Hinton, Geoffrey E.
    Osindero, Simon
    Teh, Yee-Whye
    [J]. NEURAL COMPUTATION, 2006, 18 (07) : 1527 - 1554
  • [6] Hiton G E, 2002, NEURAL COMPUT, V14, P1771
  • [7] RIDGE REGRESSION - BIASED ESTIMATION FOR NONORTHOGONAL PROBLEMS
    HOERL, AE
    KENNARD, RW
    [J]. TECHNOMETRICS, 1970, 12 (01) : 55 - &
  • [8] Extreme Learning Machine for Regression and Multiclass Classification
    Huang, Guang-Bin
    Zhou, Hongming
    Ding, Xiaojian
    Zhang, Rui
    [J]. IEEE TRANSACTIONS ON SYSTEMS MAN AND CYBERNETICS PART B-CYBERNETICS, 2012, 42 (02): : 513 - 529
  • [9] Partial Logistic Artificial Neural Network for Competing Risks Regularized With Automatic Relevance Determination
    Lisboa, Paulo J. G.
    Etchells, Terence A.
    Jarman, Ian H.
    Arsene, Corneliu T. C.
    Aung, M. S. Hane
    Eleuteri, Antonio
    Taktak, Azzam F. G.
    Ambrogi, Federico
    Boracchi, Patrizia
    Biganzoli, Elia
    [J]. IEEE TRANSACTIONS ON NEURAL NETWORKS, 2009, 20 (09): : 1403 - 1416
  • [10] Kernel logistic regression using truncated Newton method
    Maalouf, Maher
    Trafalis, Theodore B.
    Adrianto, Indra
    [J]. COMPUTATIONAL MANAGEMENT SCIENCE, 2011, 8 (04) : 415 - 428