A conserved protonation-dependent switch controls drug binding in the Abl kinase

被引:216
作者
Shan, Yibing [1 ]
Seeliger, Markus A. [2 ,3 ]
Eastwood, Michael P. [1 ]
Frank, Filipp [2 ,3 ]
Xu, Huafeng [1 ]
Jensen, Morten O. [1 ]
Dror, Ron O. [1 ]
Kuriyan, John [2 ,3 ]
Shaw, David E. [1 ,4 ]
机构
[1] DE Shaw Res, New York, NY 10036 USA
[2] Univ Calif Berkeley, Howard Hughes Med Inst, Dept Mol & Cell Biol, Berkeley, CA 94720 USA
[3] Univ Calif Berkeley, Dept Chem, Berkeley, CA 94720 USA
[4] Columbia Univ, Ctr Computat Biol & Bioinformat, New York, NY 10032 USA
基金
美国国家卫生研究院;
关键词
conformational change; DFG motif; imatinib; molecular dynamics simulation; pH dependence; CRYSTAL-STRUCTURE; PROTEIN-KINASES; CONFORMATIONAL-CHANGES; CATALYTIC SUBUNIT; IMATINIB MESYLATE; FORCE-FIELD; C-ABL; SRC; MECHANISM; INHIBITORS;
D O I
10.1073/pnas.0811223106
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In many protein kinases, a characteristic conformational change ( the "DFG flip'') connects catalytically active and inactive conformations. Many kinase inhibitors-including the cancer drug imatinib-selectively target a specific DFG conformation, but the function and mechanism of the flip remain unclear. Using long molecular dynamics simulations of the Abl kinase, we visualized the DFG flip in atomic-level detail and formulated an energetic model predicting that protonation of the DFG aspartate controls the flip. Consistent with our model's predictions, we demonstrated experimentally that the kinetics of imatinib binding to Abl kinase have a pH dependence that disappears when the DFG aspartate is mutated. Our model suggests a possible explanation for the high degree of conservation of the DFG motif: that the flip, modulated by electrostatic changes inherent to the catalytic cycle, allows the kinase to access flexible conformations facilitating nucleotide binding and release.
引用
收藏
页码:139 / 144
页数:6
相关论文
共 51 条
[1]   Kinetic and catalytic mechanisms of protein kinases [J].
Adams, JA .
CHEMICAL REVIEWS, 2001, 101 (08) :2271-2290
[2]  
AQVIST J, 1990, J PHYS CHEM-US, V94, P8021, DOI 10.1021/j100384a009
[3]   Integrated modeling program, applied chemical theory (IMPACT) [J].
Banks, JL ;
Beard, HS ;
Cao, YX ;
Cho, AE ;
Damm, W ;
Farid, R ;
Felts, AK ;
Halgren, TA ;
Mainz, DT ;
Maple, JR ;
Murphy, R ;
Philipp, DM ;
Repasky, MP ;
Zhang, LY ;
Berne, BJ ;
Friesner, RA ;
Gallicchio, E ;
Levy, RM .
JOURNAL OF COMPUTATIONAL CHEMISTRY, 2005, 26 (16) :1752-1780
[4]  
Berendsen H. J. C., 1981, Intermol. Forces, P331
[5]   PHOSPHOTRANSFERASE AND SUBSTRATE BINDING MECHANISM OF THE CAMP-DEPENDENT PROTEIN-KINASE CATALYTIC SUBUNIT FROM PORCINE HEART AS DEDUCED FROM THE 2.0 ANGSTROM STRUCTURE OF THE COMPLEX WITH MN2+ ADENYLYL IMIDODIPHOSPHATE AND INHIBITOR PEPTIDE PKI(5-24) [J].
BOSSEMEYER, D ;
ENGH, RA ;
KINZEL, V ;
PONSTINGL, H ;
HUBER, R .
EMBO JOURNAL, 1993, 12 (03) :849-859
[6]  
Bowers K. J., 2006, IN SC 06 PROC 2006
[7]   The midpoint method for parallelization of particle simulations [J].
Bowers, Kevin J. ;
Dror, Ron O. ;
Shaw, David E. .
JOURNAL OF CHEMICAL PHYSICS, 2006, 124 (18)
[8]   Zonal methods for the parallel execution of range-limited N-body simulations [J].
Bowers, Kevin J. ;
Dror, Ron O. ;
Shaw, David E. .
JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 221 (01) :303-329
[9]   Mutagenesis of p38α MAP kinase establishes key roles of Phe169 in function and structural dynamics and reveals a novel DFG-OUT state [J].
Bukhtiyarova, Marina ;
Karpusas, Michael ;
Northrop, Katrina ;
Namboodiri, Haridasan V. M. ;
Springman, Eric B. .
BIOCHEMISTRY, 2007, 46 (19) :5687-5696
[10]   Protein kinases - the major drug targets of the twenty-first century? [J].
Cohen, P .
NATURE REVIEWS DRUG DISCOVERY, 2002, 1 (04) :309-315