Automorphisms of the Doubles of Purely Non-abelian Finite Groups

被引:13
作者
Keilberg, Marc [1 ]
机构
[1] Univ Bourgogne, Inst Math Bourgogne, Fac Sci Mirande, F-21078 Dijon, France
关键词
Finite groups; Automorphisms; Endomorphisms; Quantum double; Tensor autoequivalences; FROBENIUS-SCHUR INDICATORS; DIRECT PRODUCTS;
D O I
10.1007/s10468-015-9540-0
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Using a recent classification of End(D(G)), we determine a number of properties for Aut(D(G)), where D(G) is the Drinfel'd double of a finite group G. Furthermore, we completely describe Aut(D(G)) for all purely non-abelian finite groups G. A description of the action of Aut(D(G)) on Rep(D(G)) is also given. We are also able to produce a simple proof that D(G) congruent to D(H) if and only if G congruent to H, for G and H finite groups.
引用
收藏
页码:1267 / 1297
页数:31
相关论文
共 27 条
[1]   AUTOMORPHISMS OF A P-GROUP [J].
ADNEY, JE ;
YEN, T .
ILLINOIS JOURNAL OF MATHEMATICS, 1965, 9 (01) :137-&
[2]   Classifying Bicrossed Products of Hopf Algebras [J].
Agore, A. L. ;
Bontea, C. G. ;
Militaru, G. .
ALGEBRAS AND REPRESENTATION THEORY, 2014, 17 (01) :227-264
[3]   DERIVATIONS AND SUTOMORPHISMS OF SOME QUANTUM ALGEBRAS [J].
ALEV, J ;
CHAMARIE, M .
COMMUNICATIONS IN ALGEBRA, 1992, 20 (06) :1787-1802
[4]   Rigidity of embeddings of minimal primitive quotients of U-q(sl(2)) in the Weyl-Hayashi quantum algebra [J].
Alev, J ;
Dumas, F .
NAGOYA MATHEMATICAL JOURNAL, 1996, 143 :119-146
[5]  
Andruskiewitsch N, 2008, IRMA LECT MATH THEOR, V12, P107, DOI 10.4171/047-1/4
[6]  
[Anonymous], GAP-Groups, Algorithms, and Programming, Version 4.12dev
[7]  
[Anonymous], 2000, Algebr. Represent. Theory
[8]  
[Anonymous], 1995, Graduate Texts in Mathematics
[9]   Automorphisms of direct products of finite groups II [J].
Bidwell, J. N. S. .
ARCHIV DER MATHEMATIK, 2008, 91 (02) :111-121
[10]   Automorphisms of direct products of finite groups [J].
Bidwell, J. N. S. ;
Curran, M. J. ;
McCaughan, D. J. .
ARCHIV DER MATHEMATIK, 2006, 86 (06) :481-489