A Review of Inverse Reinforcement Learning Theory and Recent Advances

被引:0
|
作者
Shao Zhifei [1 ]
Joo, Er Meng [1 ]
机构
[1] Nanyang Technol Univ, Sch Elect & Elect Engn, Singapore, Singapore
来源
2012 IEEE CONGRESS ON EVOLUTIONARY COMPUTATION (CEC) | 2012年
关键词
Reinforcement learning; inverse reinforcement learning; reward function; expert demonstration; ROBOT;
D O I
暂无
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
A major challenge faced by machine learning community is the decision making problems under uncertainty. Reinforcement Learning (RL) techniques provide a powerful solution for it. An agent used by RL interacts with a dynamic environment and finds a policy through a reward function, without using target labels like Supervised Learning (SL). However, one fundamental assumption of existing RL algorithms is that reward function, the most succinct representation of the designer's intention, needs to be provided beforehand. In practice, the reward function can be very hard to specify and exhaustive to tune for large and complex problems, and this inspires the development of Inverse Reinforcement Learning (IRL), an extension of RL, which directly tackles this problem by learning the reward function through expert demonstrations. IRL introduces a new way of learning policies by deriving expert's intentions, in contrast to directly learning policies, which can be redundant and have poor generalization ability. In this paper, the original IRL algorithms and its close variants, as well as their recent advances are reviewed and compared.
引用
收藏
页数:8
相关论文
共 50 条
  • [32] Federated learning: a comprehensive review of recent advances and applications
    Kaur, Harmandeep
    Rani, Veenu
    Kumar, Munish
    Sachdeva, Monika
    Mittal, Ajay
    Kumar, Krishan
    MULTIMEDIA TOOLS AND APPLICATIONS, 2023, 83 (18) : 54165 - 54188
  • [33] A review of speaker diarization: Recent advances with deep learning
    Park, Tae Jin
    Kanda, Naoyuki
    Dimitriadis, Dimitrios
    Han, Kyu J.
    Watanabe, Shinji
    Narayanan, Shrikanth
    COMPUTER SPEECH AND LANGUAGE, 2022, 72
  • [34] A review of recent advances and applications of machine learning in tribology
    Sose, Abhishek T. T.
    Joshi, Soumil Y. Y.
    Kunche, Lakshmi Kumar
    Wang, Fangxi
    Deshmukh, Sanket A. A.
    PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2023, 25 (06) : 4408 - 4443
  • [35] Federated learning: a comprehensive review of recent advances and applications
    Harmandeep Kaur
    Veenu Rani
    Munish Kumar
    Monika Sachdeva
    Ajay Mittal
    Krishan Kumar
    Multimedia Tools and Applications, 2024, 83 : 54165 - 54188
  • [36] Repeated Inverse Reinforcement Learning
    Amin, Kareem
    Jiang, Nan
    Singh, Satinder
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 30 (NIPS 2017), 2017, 30
  • [37] Cooperative Inverse Reinforcement Learning
    Hadfield-Menell, Dylan
    Dragan, Anca
    Abbeel, Pieter
    Russell, Stuart
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 29 (NIPS 2016), 2016, 29
  • [38] Misspecification in Inverse Reinforcement Learning
    Skalse, Joar
    Abate, Alessandro
    THIRTY-SEVENTH AAAI CONFERENCE ON ARTIFICIAL INTELLIGENCE, VOL 37 NO 12, 2023, : 15136 - 15143
  • [39] Lifelong Inverse Reinforcement Learning
    Mendez, Jorge A.
    Shivkumar, Shashank
    Eaton, Eric
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 31 (NIPS 2018), 2018, 31
  • [40] Bayesian Inverse Reinforcement Learning
    Ramachandran, Deepak
    Amir, Eyal
    20TH INTERNATIONAL JOINT CONFERENCE ON ARTIFICIAL INTELLIGENCE, 2007, : 2586 - 2591