Origin of the unique activity of Pt/TiO2 catalysts for the water-gas shift reaction

被引:83
作者
Ammal, Salai Cheettu [1 ]
Heyden, Andreas [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Water-gas shift reaction; Three-phase boundary; Microkinetic modeling; Interface reaction; Redox pathway; DFT; LOW-TEMPERATURE OXIDATION; TOTAL-ENERGY CALCULATIONS; FUEL-CELL APPLICATIONS; NOBLE-METAL CATALYSTS; FINDING SADDLE-POINTS; CO OXIDATION; CARBON-MONOXIDE; OXIDE; GOLD; AU;
D O I
10.1016/j.jcat.2013.06.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Periodic density functional theory calculations and microkinetic modeling are used to illustrate the specific role of the three-phase boundary (TPB) in determining the activity and selectivity of TiO2-supported Pt catalysts for the water-gas shift (WGS) reaction. The Pt-8/TiO2(1 1 0) catalyst model identified from a systematic ab initio atomistic thermodynamics study is used to investigate the redox mechanism and associative pathway with redox regeneration of the WGS reaction. Analysis of a microkinetic model determined exclusively from first principles suggests that a CO-promoted redox pathway dominates in the low-temperature range of 473-623 K and the classical redox pathway becomes dominant at temperatures above 673 K. The improved activity of the TPB compared to the Pt(1 1 1) surface can be explained by a reduced CO adsorption strength on Pt sites at the TPB, an increased number of oxygen vacancy at the TPB, and a significantly facilitated water activation and dissociation. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 50 条
[41]   Low-Temperature Water-Gas Shift Reaction over Au/ZrO2 Catalysts Using Hydrothermally Synthesized Zirconia as Supports [J].
Zhang Yanjie ;
Zhan Yingying ;
Cao Yanning ;
Chen Chongqi ;
Lin Xingyi ;
Zheng Qi .
CHINESE JOURNAL OF CATALYSIS, 2012, 33 (02) :230-236
[42]   Fabrication of Pt/CeO2 nanofibers for use in water-gas shift reaction [J].
Tang, Huijuan ;
Sun, Haiyan ;
Chen, Dairong ;
Jiao, Xiuling .
MATERIALS LETTERS, 2012, 77 :7-9
[43]   Effects of promotion of TiO2 with alkaline earth metals on the chemisorptive properties and water-gas shift activity of supported platinum catalysts [J].
Panagiotopoulou, Paraskevi ;
Kondarides, Dimitris I. .
APPLIED CATALYSIS B-ENVIRONMENTAL, 2011, 101 (3-4) :738-746
[44]   Effects of Reaction Temperature and Support Composition on the Mechanism of Water-Gas Shift Reaction over Supported-Pt Catalysts [J].
Kalamaras, Christos M. ;
Gonzalez, Ines D. ;
Navarro, Rufino M. ;
Fierro, Jose Luis G. ;
Efstathiou, Angelos M. .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (23) :11595-11610
[45]   Nature of Ptn/TiO2(110) Interface under Water-Gas Shift Reaction Conditions: A Constrained ab Initio Thermodynamics Study [J].
Ammal, Salai Cheettu ;
Heyden, Andreas .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (39) :19246-19259
[46]   In Situ Dispersion of Palladium on TiO2 During Reverse Water-Gas Shift Reaction: Formation of Atomically Dispersed Palladium [J].
Nelson, Nicholas C. ;
Chen, Linxiao ;
Meira, Debora ;
Kovarik, Libor ;
Szanyi, Janos .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (40) :17657-17663
[47]   The water-gas-shift reaction over Ir/TiO2 and Ir-Re/TiO2 catalysts [J].
Sato, Yasushi ;
Soma, Yoshinori ;
Miyao, Toshihiro ;
Naito, Shuichi .
APPLIED CATALYSIS A-GENERAL, 2006, 304 (01) :78-85
[48]   Support Effect on the Water Gas Shift Activity of Chemical Vapor Deposition-Tailored-Pt/TiO2 Catalysts [J].
Faust, Matthias ;
Dinkel, Mirja ;
Bruns, Michael ;
Braese, Stefan ;
Seipenbusch, Martin .
INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2017, 56 (12) :3194-3203
[49]   A systematic theoretical study the active sites of potassium promoter on the activity of water-gas shift reaction over Pt(111) [J].
Wang, Gui-Chang .
APPLIED SURFACE SCIENCE, 2023, 611
[50]   Facet-dependent activity of shape-controlled TiO2 supported Au nanoparticles for the water-gas shift reaction [J].
Tang, Yuanting ;
Chen, Yongjie ;
Liu, Xiao ;
Wang, ChengXiong ;
Zhao, Yunkun ;
Chen, Rong ;
Shan, Bin .
CATALYSIS SCIENCE & TECHNOLOGY, 2022, 12 (05) :1530-1538