Origin of the unique activity of Pt/TiO2 catalysts for the water-gas shift reaction

被引:83
作者
Ammal, Salai Cheettu [1 ]
Heyden, Andreas [1 ]
机构
[1] Univ S Carolina, Dept Chem Engn, Columbia, SC 29208 USA
基金
美国国家科学基金会;
关键词
Water-gas shift reaction; Three-phase boundary; Microkinetic modeling; Interface reaction; Redox pathway; DFT; LOW-TEMPERATURE OXIDATION; TOTAL-ENERGY CALCULATIONS; FUEL-CELL APPLICATIONS; NOBLE-METAL CATALYSTS; FINDING SADDLE-POINTS; CO OXIDATION; CARBON-MONOXIDE; OXIDE; GOLD; AU;
D O I
10.1016/j.jcat.2013.06.014
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Periodic density functional theory calculations and microkinetic modeling are used to illustrate the specific role of the three-phase boundary (TPB) in determining the activity and selectivity of TiO2-supported Pt catalysts for the water-gas shift (WGS) reaction. The Pt-8/TiO2(1 1 0) catalyst model identified from a systematic ab initio atomistic thermodynamics study is used to investigate the redox mechanism and associative pathway with redox regeneration of the WGS reaction. Analysis of a microkinetic model determined exclusively from first principles suggests that a CO-promoted redox pathway dominates in the low-temperature range of 473-623 K and the classical redox pathway becomes dominant at temperatures above 673 K. The improved activity of the TPB compared to the Pt(1 1 1) surface can be explained by a reduced CO adsorption strength on Pt sites at the TPB, an increased number of oxygen vacancy at the TPB, and a significantly facilitated water activation and dissociation. (C) 2013 Elsevier Inc. All rights reserved.
引用
收藏
页码:78 / 90
页数:13
相关论文
共 76 条
[1]   Nature of Ptn/TiO2(110) Interface under Water-Gas Shift Reaction Conditions: A Constrained ab Initio Thermodynamics Study [J].
Ammal, Salai Cheettu ;
Heyden, Andreas .
JOURNAL OF PHYSICAL CHEMISTRY C, 2011, 115 (39) :19246-19259
[2]   Modeling the noble metal/TiO2 (110) interface with hybrid DFT functionals: A periodic electrostatic embedded cluster model study [J].
Ammal, Salai Cheettu ;
Heyden, Andreas .
JOURNAL OF CHEMICAL PHYSICS, 2010, 133 (16)
[3]   Bifunctional catalysts for single-stage water-gas shift reaction in fuel cell applications. Part 1. Effect of the support on the reaction sequence [J].
Azzam, K. G. ;
Babich, I. V. ;
Seshan, K. ;
Lefferts, L. .
JOURNAL OF CATALYSIS, 2007, 251 (01) :153-162
[4]   A bifunctional catalyst for the single-stage water-gas shift reaction in fuel cell applications. Part 2. Roles of the support and promoter on catalyst activity and stability [J].
Azzam, K. G. ;
Babich, I. V. ;
Seshan, K. ;
Lefferts, L. .
JOURNAL OF CATALYSIS, 2007, 251 (01) :163-171
[5]  
Bartholomew CH, 2006, FUNDAMENTALS OF INDUSTRIAL CATALYTIC PROCESSES, 2ND EDITION, P1, DOI 10.1002/9780471730071
[6]   PROJECTOR AUGMENTED-WAVE METHOD [J].
BLOCHL, PE .
PHYSICAL REVIEW B, 1994, 50 (24) :17953-17979
[7]   Catalysis by gold [J].
Bond, GC ;
Thompson, DT .
CATALYSIS REVIEWS-SCIENCE AND ENGINEERING, 1999, 41 (3-4) :319-388
[8]   Studies of the water-gas-shift reaction on ceria-supported Pt, Pd, and Rh: implications for oxygen-storage properties [J].
Bunluesin, T ;
Gorte, RJ ;
Graham, GW .
APPLIED CATALYSIS B-ENVIRONMENTAL, 1998, 15 (1-2) :107-114
[9]  
Buzzi-Ferraris G., BzzMath: Numerical libraries in C++‖, Politecnico di Milano
[10]   New insight into mechanisms in water-gas-shift reaction on Au/CeO2(111): A density functional theory and kinetic study [J].
Chen, Ying ;
Wang, Haifeng ;
Burch, Robbie ;
Hardacre, Christopher ;
Hu, P. .
FARADAY DISCUSSIONS, 2011, 152 :121-133