Detecting Supercritical CO2 in Brine at Sequestration Pressure with an Optical Fiber Sensor

被引:36
作者
Bao, Bo [1 ]
Melo, Luis [2 ]
Davies, Benjamin [2 ]
Fadaei, Hossein [1 ]
Sinton, David [1 ]
Wild, Peter [2 ]
机构
[1] Univ Toronto, Ctr Sustainable Energy, Dept Mech & Ind Engn, Toronto, ON M5S 3G8, Canada
[2] Univ Victoria, Inst Integrated Energy Syst, Dept Mech Engn, Victoria, BC V8W 3P6, Canada
基金
加拿大自然科学与工程研究理事会;
关键词
REFRACTIVE-INDEX; NACL SOLUTIONS; TEMPERATURE; LIQUIDS; MIGRATION; STORAGE; PROBE; SITE;
D O I
10.1021/es303596a
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Monitoring of sequestered carbon is essential to establishing the environmental safety and the efficacy of geological carbon sequestration. Sequestration in saline aquifers requires the detection of supercritical CO2 and CO2-saturated brine as distinct from the native reservoir brine. Here we demonstrate an all-optical approach to detect both supercritical CO2, and saturated brine under sequestration conditions. The method employs a long-period grating written on an optical fiber with a resonance wavelength that is sensitive to local refractive index within a pressure- and temperature-controlled apparatus at 40 degrees C and 1400 psi (9.65 MPa). The supercritical CO2 and brine are clearly distinguished by a wavelength shift of 1.149 nm (refractive index difference of 0.2371). The CO2-saturated brine is also detectable relative to brine, with a resonance wavelength shift of 0.192 nm (refractive index difference of 0.0396). Importantly, these findings indicate the potential for distributed, all-optical monitoring of CO2 sequestration in saline aquifers.
引用
收藏
页码:306 / 313
页数:8
相关论文
共 51 条
[1]  
Abdi O., 2008, P SOC PHOTO-OPT INS, V6932
[2]   Plasticization of polymers with supercritical carbon dioxide: Experimental determination of glass-transition temperatures [J].
Alessi, P ;
Cortesi, A ;
Kikic, I ;
Vecchione, F .
JOURNAL OF APPLIED POLYMER SCIENCE, 2003, 88 (09) :2189-2193
[3]  
[Anonymous], 2005, Technology Status Report: Monitoring Technologies for the Geological Storage of CO2
[4]  
[Anonymous], 2012, KNOWL SHAR MVA MMV C
[5]   Monitoring of CO2 injected at Sleipner using time-lapse seismic data [J].
Arts, R ;
Eiken, O ;
Chadwick, A ;
Zweigel, P ;
van der Meer, L ;
Zinszner, B .
ENERGY, 2004, 29 (9-10) :1383-1392
[6]  
Arts R. J., 2007, SEG, DOI [10.1190/1.2793089, DOI 10.1190/1.2793089]
[7]   The fibre optic reflectometer: A new and simple probe for refractive index and phase separation measurements in gases, liquids and supercritical fluids [J].
Avdeev, MV ;
Konovalov, AN ;
Bagratashvili, VN ;
Popov, VK ;
Tsypina, SI ;
Sokolova, M ;
Ke, J ;
Poliakoff, M .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2004, 6 (06) :1258-1263
[8]   Overview of advanced fiber optic sensor equipment for energy production applications [J].
Berthold, JW ;
Lopushansky, RL .
FIBER OPTIC SENSOR TECHNOLOGY AND APPLICATIONS III, 2004, 5589 :197-205
[9]   Spatial and temporal evolution of injected CO2 at the Sleipner Field, North Sea [J].
Boait, F. C. ;
White, N. J. ;
Bickle, M. J. ;
Chadwick, R. A. ;
Neufeld, J. A. ;
Huppert, H. E. .
JOURNAL OF GEOPHYSICAL RESEARCH-SOLID EARTH, 2012, 117
[10]   Fibre optic sensors: a review of today's applications [J].
Bogue, Robert .
SENSOR REVIEW, 2011, 31 (04) :304-309