A Supergeometric Approach to Poisson Reduction

被引:10
作者
Cattaneo, A. S. [1 ]
Zambon, M. [2 ]
机构
[1] Univ Zurich Irchel, Inst Math, CH-8057 Zurich, Switzerland
[2] Univ Porto, Dept Matemat Pura, P-4169007 Oporto, Portugal
关键词
GEOMETRY;
D O I
10.1007/s00220-013-1664-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work introduces a unified approach to the reduction of Poisson manifolds using their description by graded symplectic manifolds. This yields a generalization of the classical Poisson reduction by distributions and allows one to construct actions of strict Lie 2-groups and to describe the corresponding reductions.
引用
收藏
页码:675 / 716
页数:42
相关论文
共 34 条
[11]   An extension of the Marsden-Ratiu reduction for Poisson manifolds [J].
Falceto, Fernando ;
Zambon, Marco .
LETTERS IN MATHEMATICAL PHYSICS, 2008, 85 (2-3) :203-219
[12]   Integrability of Poisson-Lie Group Actions [J].
Fernandes, Rui Loja ;
Iglesias Ponte, David .
LETTERS IN MATHEMATICAL PHYSICS, 2009, 90 (1-3) :137-159
[13]   THE MOMENTUM MAP IN POISSON GEOMETRY [J].
Fernandes, Rui Loja ;
Ortega, Juan-Pablo ;
Ratiu, Tudor S. .
AMERICAN JOURNAL OF MATHEMATICS, 2009, 131 (05) :1261-1310
[14]  
Forrester-Barker M., 2002, GROUP OBJECTS INTERN
[15]   ON DEFORMATION OF RINGS AND ALGEBRAS .2. [J].
GERSTENH.M .
ANNALS OF MATHEMATICS, 1966, 84 (01) :1-&
[16]  
Khudaverdian O.M., 1996, P INT WORKSHOP GEOME, P144
[17]   Derived brackets [J].
Kosmann-Schwarzbach, Y .
LETTERS IN MATHEMATICAL PHYSICS, 2004, 69 (1) :61-87
[18]   From Poisson algebras to Gerstenhaber algebras [J].
KosmannSchwarzbach, Y .
ANNALES DE L INSTITUT FOURIER, 1996, 46 (05) :1243-&
[19]  
Lu J.-H., 1990, PhD thesis