A Supergeometric Approach to Poisson Reduction

被引:10
作者
Cattaneo, A. S. [1 ]
Zambon, M. [2 ]
机构
[1] Univ Zurich Irchel, Inst Math, CH-8057 Zurich, Switzerland
[2] Univ Porto, Dept Matemat Pura, P-4169007 Oporto, Portugal
关键词
GEOMETRY;
D O I
10.1007/s00220-013-1664-7
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
This work introduces a unified approach to the reduction of Poisson manifolds using their description by graded symplectic manifolds. This yields a generalization of the classical Poisson reduction by distributions and allows one to construct actions of strict Lie 2-groups and to describe the corresponding reductions.
引用
收藏
页码:675 / 716
页数:42
相关论文
共 34 条
[1]   The geometry of the master equation and topological quantum field theory [J].
Alexandrov, M ;
Schwarz, A ;
Zaboronsky, O ;
Kontsevich, M .
INTERNATIONAL JOURNAL OF MODERN PHYSICS A, 1997, 12 (07) :1405-1429
[2]  
[Anonymous], 2002, Quantization, Poisson brackets and beyond (Manchester, 2001)
[3]  
Baez John, 2004, Theory and Applications of Categories electronic only, V12, P423
[4]  
Baez John Carlos, 1998, Contemporary Mathematics, V230, P1, DOI 10.1090/conm/230/03336
[5]   DETERMINATION OF A DOUBLE LIE GROUPOID BY ITS CORE DIAGRAM [J].
BROWN, R ;
MACKENZIE, KCH .
JOURNAL OF PURE AND APPLIED ALGEBRA, 1992, 80 (03) :237-272
[6]  
BURSZTYN H, GEN REDUCTION UNPUB
[7]   Poisson reduction and branes in Poisson-Sigma models [J].
Calvo, I ;
Falceto, F .
LETTERS IN MATHEMATICAL PHYSICS, 2004, 70 (03) :231-247
[8]  
Cattaneo AS, 2009, AIP CONF PROC, V1093, P48
[9]   COISOTROPIC EMBEDDINGS IN POISSON MANIFOLDS [J].
Cattaneo, A. S. ;
Zambon, M. .
TRANSACTIONS OF THE AMERICAN MATHEMATICAL SOCIETY, 2009, 361 (07) :3721-3746
[10]  
Coste A., 1987, Publ Dp Math Nouvelle Sr A, V2, P1