Liver-specific knockout of arginase-1 leads to a profound phenotype similar to inducible whole body arginase-1 deficiency

被引:22
作者
Ballantyne, Laurel L. [1 ]
Sin, Yuan Yan [1 ]
Al-Dirbashi, Osama Y. [2 ,3 ]
Li, Xinzhi [1 ]
Hurlbut, David J. [4 ]
Funk, Colin D. [1 ]
机构
[1] Queens Univ, Dept Biomed & Mol Sci, 18 Stuart St,Rm 433 Botterell Hall, Kingston, ON K7L 3N6, Canada
[2] Childrens Hosp Eastern Ontario, Newborn Screening Ontario, Ottawa, ON, Canada
[3] United Arab Emirates Univ, Fac Med & Hlth Sci, Al Ain, U Arab Emirates
[4] Queens Univ, Kingston Gen Hosp, Dept Pathol & Mol Med, Kingston, ON, Canada
基金
加拿大健康研究院;
关键词
Arginase; Liver; Hepatocyte; Urea cycle; Gene therapy; Inducible knockout mice; GENE-THERAPY; MOUSE MODEL; L-ARGININE; MICE; SECRETION; INSULIN;
D O I
10.1016/j.ymgmr.2016.10.003
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
Arginase-1 (Arg1) converts arginine to urea and ornithine in the distal step of the urea cycle in liver. We previously generated a tamoxifen-inducible Arg1 deficient mouse model (Arg1-Cre) that disrupts Arg1 expression throughout the whole body and leads to lethality approximate to 2 weeks after gene disruption. Here, we evaluate if liver-selective Arg1 loss is sufficient to recapitulate the phenotype observed in global Arg1 knockout mice, as well as to gauge the effectiveness of gene delivery or hepatocyte transplantation to rescue the phenotype. Liver-selective Arg1 deletion was induced by using an adeno-associated viral (AAV)-thyroxine binding globulin (TBG) promoter-Cre recombinase vector administered to Arg1 "floxed" mice; Arg1(fl/fl)). An AAV vector expressing an Arg1-enhanced green fluorescent protein (Arg1-eGFP) transgene was used for gene delivery, while intrasplenic injection of wild-type(WT) C57BL/6 hepatocytes after partial hepatectomy was used for cell delivery to "rescue" tamoxifen-treated Arg1-Cre mice. The results indicate that liver-selective loss of Arg1 (>90% deficient) leads to a phenotype resembling the whole body knockout of Arg1 with lethality approximate to 3 weeks after Cre-induced gene disruption. Delivery of Arg1-eGFP AAV rescues more than half of Arg1 global knockout male mice (survival >4 months) but a significant proportion still succumb to the enzyme deficiency even though liver expression and enzyme activity of the fusion protein reach levels observed in WT animals. Significant Arg1 enzyme activity from engrafted WT hepatocytes into knockout livers can be achieved but not sufficient for rescuing the lethal phenotype. This raises a conundrum relating to liver-specific expression of Arg1. On the one hand, loss of expression in this organ appears to be both necessary and sufficient to explain the lethal phenotype of the genetic disorder in mice. On the other hand, gene and cell-directed therapies suggest that rescue of extra-hepatic Arg1 expression may also be necessary for disease correction. Further studies are needed in order to illuminate the detailed mechanisms for pathogenesis of Arg1-deficiency. (C) 2016 The Authors. Published by Elsevier Inc.
引用
收藏
页码:54 / 60
页数:7
相关论文
共 22 条
[1]   Strategies to Rescue the Consequences of Inducible Arginase-1 Deficiency in Mice [J].
Ballantyne, Laurel L. ;
Sin, Yuan Yan ;
Amand, Tim St. ;
Si, Joshua ;
Goossens, Steven ;
Haenebalcke, Lieven ;
Haigh, Jody J. ;
Kyriakopoulou, Lianna ;
Schulze, Andreas ;
Funk, Colin D. .
PLOS ONE, 2015, 10 (05)
[2]   Human recombinant arginase enzyme reduces plasma arginine in mouse models of arginase deficiency [J].
Burrage, Lindsay C. ;
Sun, Qin ;
Elsea, Sarah H. ;
Jiang, Ming-Ming ;
Nagamani, Sandesh C. S. ;
Frankel, Arthur E. ;
Stone, Everett ;
Alters, Susan E. ;
Johnson, Dale E. ;
Rowlinson, Scott W. ;
Georgiou, George ;
Lee, Brendan H. .
HUMAN MOLECULAR GENETICS, 2015, 24 (22) :6417-6427
[3]   The CASTOR Proteins Are Arginine Sensors for the mTORC1 Pathway [J].
Chantranupong, Lynne ;
Scaria, Sonia M. ;
Saxton, Robert A. ;
Gygi, Melanie P. ;
Shen, Kuang ;
Wyant, Gregory A. ;
Wang, Tim ;
Harper, J. Wade ;
Gygi, Steven P. ;
Sabatini, David M. .
CELL, 2016, 165 (01) :153-164
[4]   Development of a new mouse model of acute pancreatitis induced by administration of L-arginine [J].
Dawra, Rajinder ;
Sharif, Rifat ;
Phillips, Phoebe ;
Dudeja, Vikas ;
Dhaulakhandi, Dhara ;
Saluja, Ashok K. .
AMERICAN JOURNAL OF PHYSIOLOGY-GASTROINTESTINAL AND LIVER PHYSIOLOGY, 2007, 292 (04) :G1009-G1018
[5]   Toll-like receptor-induced arginase 1 in macrophages thwarts effective immunity against intracellular pathogens [J].
El Kasmi, Karim C. ;
Qualls, Joseph E. ;
Pesce, John T. ;
Smith, Amber M. ;
Thompson, Robert W. ;
Henao-Tamayo, Marcela ;
Basaraba, Randall J. ;
Koenig, Till ;
Schleicher, Ulrike ;
Koo, Mi-Sun ;
Kaplan, Gilla ;
Fitzgerald, Katherine A. ;
Tuomanen, Elaine I. ;
Orme, Ian M. ;
Kanneganti, Thirumala-Devi ;
Bogdan, Christian ;
Wynn, Thomas A. ;
Murray, Peter J. .
NATURE IMMUNOLOGY, 2008, 9 (12) :1399-1406
[6]   Short-term Correction of Arginase Deficiency in a Neonatal Murine Model With a Helper-dependent Adenoviral Vector [J].
Gau, Chia-Ling ;
Rosenblatt, Robin A. ;
Cerullo, Vincenzo ;
Lay, Fides D. ;
Dow, Adrienne C. ;
Livesay, Justin ;
Brunetti-Pierri, Nicola ;
Lee, Brendan ;
Cederbaum, Stephen D. ;
Grody, Wayne W. ;
Lipshutz, Gerald S. .
MOLECULAR THERAPY, 2009, 17 (07) :1155-1163
[7]   Liver repopulation after cell transplantation in mice treated with retrorsine and carbon tetrachloride [J].
Gu, DQ ;
Fu, T ;
Nelson, JA ;
Superina, RA ;
Soriano, HE .
TRANSPLANTATION, 2002, 73 (11) :1818-1824
[8]   Myocyte-mediated Arginase Expression Controls Hyperargininemia but not Hyperammonemia in Arginase-deficient Mice [J].
Hu, Chuhong ;
Kasten, Jennifer ;
Park, Hana ;
Bhargava, Ragini ;
Tail, Denise S. ;
Grody, Wayne W. ;
Nguyen, Quynh G. ;
Hauschka, Stephen D. ;
Cederbaum, Stephen D. ;
Lipshutz, Gerald S. .
MOLECULAR THERAPY, 2014, 22 (10) :1792-1802
[9]   The human arginases and arginase deficiency [J].
Iyer, R ;
Jenkinson, CP ;
Vockley, JG ;
Kern, RM ;
Grody, WW ;
Cederbaum, S .
JOURNAL OF INHERITED METABOLIC DISEASE, 1998, 21 :86-100
[10]   Mouse model for human arginase deficiency [J].
Iyer, RK ;
Yoo, PK ;
Kern, RM ;
Rozengurt, N ;
Tsoa, R ;
O'Brien, WE ;
Yu, H ;
Grody, WW ;
Cederbaum, SD .
MOLECULAR AND CELLULAR BIOLOGY, 2002, 22 (13) :4491-4498