Drug delivery: Experiments, mathematical modelling and machine learning

被引:15
作者
Boso, Daniela P. [1 ]
Di Mascolo, Daniele [2 ]
Santagiuliana, Raffaella [1 ]
Decuzzi, Paolo [2 ]
Schrefler, Bernhard A. [1 ,3 ]
机构
[1] Univ Padua, Dept Civil Environm & Architectural Engn, Via Marzolo 9, I-35131 Padua, Italy
[2] Italian Inst Technol, Lab Nanotechnol Precis Med, Via Morego 30, I-16163 Genoa, Italy
[3] Tech Univ Munich, Inst Adv Study, Lichtenbergstr 2, D-85748 Garching, Germany
基金
美国国家卫生研究院;
关键词
Drug delivery; Tumor spheroids; Artificial neural network; Cancer; Mathematical model; Physical parameter identification; Oncophysics; SMEARED FINITE-ELEMENT; SPHERICAL POLYMERIC NANOCONSTRUCTS; MASS-TRANSPORT; BIOLOGICAL TISSUE; CAPILLARY SYSTEMS; TUMOR; GROWTH; CALIBRATION; VALIDATION; FRAMEWORK;
D O I
10.1016/j.compbiomed.2020.103820
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
We address the problem of determining from laboratory experiments the data necessary for a proper modeling of drug delivery and efficacy in anticancer therapy. There is an inherent difficulty in extracting the necessary parameters, because the experiments often yield an insufficient quantity of information. To overcome this difficulty, we propose to combine real experiments, numerical simulation, and Machine Learning (ML) based on Artificial Neural Networks (ANN), aiming at a reliable identification of the physical model factors, e.g. the killing action of the drug. To this purpose, we exploit the employed mathematical-numerical model for tumor growth and drug delivery, together with the ANN - ML procedure, to integrate the results of the experimental tests and feed back the model itself, thus obtaining a reliable predictive tool. The procedure represents a hybrid datadriven, physics-informed approach to machine learning. The physical and mathematical model employed for the numerical simulations is without extracellular matrix (ECM) and healthy cells because of the experimental conditions we reproduce.
引用
收藏
页数:13
相关论文
共 38 条
[21]   Evaluating the influence of mechanical stress on anticancer treatments through a multiphase porous media model [J].
Mascheroni, Pietro ;
Boso, Daniela ;
Preziosi, Luigi ;
Schrefler, Bernhard A. .
JOURNAL OF THEORETICAL BIOLOGY, 2017, 421 :179-188
[22]   Predicting the growth of glioblastoma multiforme spheroids using a multiphase porous media model [J].
Mascheroni, Pietro ;
Stigliano, Cinzia ;
Carfagna, Melania ;
Boso, Daniela P. ;
Preziosi, Luigi ;
Decuzzi, Paolo ;
Schrefler, Bernhard A. .
BIOMECHANICS AND MODELING IN MECHANOBIOLOGY, 2016, 15 (05) :1215-1228
[23]   What does physics have to do with cancer? [J].
Michor, Franziska ;
Liphardt, Jan ;
Ferrari, Mauro ;
Widom, Jonathan .
NATURE REVIEWS CANCER, 2011, 11 (09) :657-670
[24]   Correction function for accuracy improvement of the Composite Smeared Finite Element for diffusive transport in biological tissue systems [J].
Milosevic, M. ;
Simic, V. ;
Milicevic, B. ;
Koay, E. J. ;
Ferrari, M. ;
Ziemys, A. ;
Kojic, M. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2018, 338 :97-116
[25]  
Mishra Dhruva K., ANNL TORACIC SURG, V93
[26]   Toward Predictive Multiscale Modeling of Vascular Tumor Growth [J].
Oden, J. Tinsley ;
Lima, Ernesto A. B. F. ;
Almeida, Regina C. ;
Feng, Yusheng ;
Rylander, Marissa Nichole ;
Fuentes, David ;
Faghihi, Danial ;
Rahman, Mohammad M. ;
DeWitt, Matthew ;
Gadde, Manasa ;
Zhou, J. Cliff .
ARCHIVES OF COMPUTATIONAL METHODS IN ENGINEERING, 2016, 23 (04) :735-779
[27]   A fully coupled space-time multiscale modeling framework for predicting tumor growth [J].
Rahman, Mohammad Mamunur ;
Feng, Yusheng ;
Yankeelov, Thomas E. ;
Oden, J. Tinsley .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2017, 320 :261-286
[28]   A hybrid three-scale model of tumor growth [J].
Rocha, H. L. ;
Almeida, R. C. ;
Lima, E. A. B. F. ;
Resende, A. C. M. ;
Oden, J. T. ;
Yankeelov, T. E. .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2018, 28 (01) :61-93
[29]   Simulation of angiogenesis in a multiphase tumor growth model [J].
Santagiuliana, R. ;
Ferrari, M. ;
Schrefler, B. A. .
COMPUTER METHODS IN APPLIED MECHANICS AND ENGINEERING, 2016, 304 :197-216
[30]   Coupling tumor growth and bio distribution models [J].
Santagiuliana, Raffaella ;
Milosevic, Miljan ;
Milicevic, Bogdan ;
Sciume, Giuseppe ;
Simic, Vladimir ;
Ziemys, Arturas ;
Kojic, Milos ;
Schrefler, Bernhard A. .
BIOMEDICAL MICRODEVICES, 2019, 21 (02)