Orthogonality preservers in C*-algebras, JB*-algebras and JB*-triples

被引:88
作者
Burgos, Maria [1 ]
Fernandez-Polo, Francisco J. [1 ]
Garces, Jorge J. [1 ]
Martinez Moreno, Juan [1 ]
Peralta, Antonio M. [1 ]
机构
[1] Univ Granada, Fac Ciencias, Dept Anal Matemat, E-18071 Granada, Spain
关键词
orthogonally preserving operators; orthogonally additive mappings; C*-algebras; von Neumann algebras; JB*-algebras; JB*-triples;
D O I
10.1016/j.jmaa.2008.07.020
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study orthogonality preserving operators between C*-algebras, JB*-algebras and JB*-triples. Let T :A E be an orthogonality preserving bounded linear operator from a C*-algebra to a JB*-triple satisfying that T**(1) = d is a von Neumann regular element. Then T(A) subset of E-2**(()r(d)), every element in T(A) and d operator commute in the JB*-algebra E-2** (r(d)), and there exists a triple homomorphism S: A -> E-2** (r(d)), such that T = L(d, r(d))S, where r(d) denotes the range tripotent of d in E**. An analogous result for A being a JB*-algebra is also obtained. When T : A B is an operator between two C*-algebras, we show that, denoting h = T**(l) then. T orthogonality preserving if and only if there exists a triple homomorphism S: A -> B** satisfying h*S(z) = S(z*)*h, hS(z*)* = S(z)h*, and T(z) = L(h . r(h)) (S(z)) = 1/2 (hr(h)*S(z)r(h)*h). This allows us to prove that a bounded linear operator between two C*-algebras is orthogonality preserving if and only if it preserves zero-triple-products. (C) 2008 Elsevier Inc. All rights reserved.
引用
收藏
页码:220 / 233
页数:14
相关论文
共 40 条
[1]  
ABRAMOVICH YA, 1983, INDAG MATH, V45, P265
[2]  
ALAMINOS J, 2007, MAPS PRESERVING ZERO
[3]  
[Anonymous], 1984, MONOGR STUD MATH
[4]   Biseparating maps between operator algebras [J].
Araujo, J ;
Jarosz, K .
JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2003, 282 (01) :48-55
[5]   SPECTRAL PROPERTIES OF LAMPERTI OPERATORS [J].
ARENDT, W .
INDIANA UNIVERSITY MATHEMATICS JOURNAL, 1983, 32 (02) :199-215
[6]   WEAK STAR-CONTINUITY OF JORDAN TRIPLE PRODUCTS AND ITS APPLICATIONS [J].
BARTON, T ;
TIMONEY, RM .
MATHEMATICA SCANDINAVICA, 1986, 59 (02) :177-191
[7]   BOUNDED DERIVATIONS OF JB-TRIPLES [J].
BARTON, TJ ;
FRIEDMAN, Y .
QUARTERLY JOURNAL OF MATHEMATICS, 1990, 41 (163) :255-268
[8]   A Saito-Tomita-Lusin theorem for JB*-triples and applications [J].
Bunce, LJ ;
Fernández-Polo, FJ ;
Moreno, JM ;
Peralta, AM .
QUARTERLY JOURNAL OF MATHEMATICS, 2006, 57 :37-48
[9]  
Bunce LJ, 2000, MATH SCAND, V86, P17
[10]   von Neumann regularity and quadratic conorms in JB*-triples and C*-algebras [J].
Burgos, Maria ;
Kaidi, El Amin ;
Campoy, Antonio Morales ;
Peralta, Antonio M. ;
Ramirez, Maribel .
ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2008, 24 (02) :185-200