Dynamic Optimization of a Dual Pressure Swing Adsorption Process for Natural Gas Purification and Carbon Capture

被引:14
|
作者
Kim, Seungnam [1 ]
Ko, Daeho [2 ]
Moon, Il [1 ]
机构
[1] Yonsei Univ, Dept Chem & Biomol Engn, Yonsei Ro 50, Seoul 03722, South Korea
[2] Gran Seoul, GS E&C, Jongro 33, Seoul 03159, South Korea
关键词
POSTCOMBUSTION CO2 CAPTURE; MOLECULAR-SIEVE; OPTIMAL-DESIGN; COALBED METHANE; PSA CYCLES; FLUE-GAS; DIOXIDE; SEPARATION; SIMULATION; SYSTEMS;
D O I
10.1021/acs.iecr.5b04157
中图分类号
TQ [化学工业];
学科分类号
0817 ;
摘要
With an increased emphasis on reduced carbon emissions, many research efforts focused on various carbon capture techniques have concurrently expanded in application. Pressure swing adsorption (PSA) is one of the key processes for carbon capture and storage (CCS). During the natural gas sweetening operation of PSA processes, a high volume of carbon dioxide is included in the waste flow (heavy product). To improve the CO2 purity of the waste flow, this work first performs the dynamic optimization of a general four-step dual PSA process. The objective of the rectifying unit is to maximize methane recovery while the objective of the stripping unit is to maximize carbon dioxide purity for CCS. In brief, decision variables for the rectifying unit are the step times, P/F ratios, and feeding velocities of each unit; the length of the bed is added as a decision variable for the stripping unit. Optimization results indicate that carbon dioxide purity increases from 41.4% to 76.3% and methane recovery increases from 78.5% to 95.4%.
引用
收藏
页码:12444 / 12451
页数:8
相关论文
共 50 条
  • [21] Development of an equilibrium theory solver applied to pressure swing adsorption cycles used in carbon capture processes
    Oreggioni, Gabriel
    Friedrich, Daniel
    Luberti, Mauro
    Ahn, Hyungwoong
    Brandani, Stefano
    COMPUTERS & CHEMICAL ENGINEERING, 2016, 94 : 18 - 27
  • [22] Pressure Swing Adsorption Technologies for Carbon Dioxide Capture
    Wiheeb, A. D.
    Helwani, Z.
    Kim, J.
    Othman, M. R.
    SEPARATION AND PURIFICATION REVIEWS, 2016, 45 (02) : 108 - 121
  • [23] Optimization of Vacuum Pressure Swing Adsorption Processes To Sequester Carbon Dioxide from Coalbed Methane
    Ko, Daeho
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2016, 55 (33) : 8967 - 8978
  • [24] Integrated adsorbent-process optimization for carbon capture and concentration using vacuum swing adsorption cycles
    Khurana, Maninder
    Farooq, Shamsuzzaman
    AICHE JOURNAL, 2017, 63 (07) : 2987 - 2995
  • [25] Modeling and simulation of a pressure–temperature swing adsorption process for dehydration of natural gas
    Abbas Aleghafouri
    Mehdi Davoudi
    Adsorption, 2018, 24 : 121 - 133
  • [26] Optimization of Multibed Pressure Swing Adsorption Processes
    Nikolic, Dragan
    Kikkinides, Eustathios S.
    Georgiadis, Michael C.
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2009, 48 (11) : 5388 - 5398
  • [27] Helium recovery and purification by dual reflux pressure swing adsorption
    Weh, Roman
    Xiao, Gongkui
    Pouya, Ehsan Sadeghi F.
    May, Eric
    SEPARATION AND PURIFICATION TECHNOLOGY, 2022, 288
  • [28] Removal of Carbon Dioxide from Natural Gas Using a Zeolite-Based Pressure Swing Adsorption Process
    Yun, Ji Sub
    Lee, Zhen Hao
    Odilova, Nargiza Norkobil Kizi
    Lim, Myung Kyun
    Park, Jaedeuk
    Shin, Jiho
    Kim, Kiwoong
    KOREAN JOURNAL OF CHEMICAL ENGINEERING, 2025,
  • [29] On the Design of a Dual Reflux Pressure Swing Adsorption Process
    Florit, Federico
    Dalla Giovanna, Luca
    Storti, Giuseppe
    Rota, Renato
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2024, 63 (26) : 11626 - 11636
  • [30] Equilibrium Theory-Based Assessment of Dual-Reflux Pressure Swing Adsorption Cycles That Utilize Light Gas for Pressure Swing
    Bhatt, Tushar S.
    Storti, Giuseppe
    Denayer, Joeri F. M.
    Rota, Renato
    INDUSTRIAL & ENGINEERING CHEMISTRY RESEARCH, 2019, 58 (01) : 350 - 365