Synthesis of One Dimensional Li2MoO4 Nanostructures and Their Electrochemical Performance as Anode Materials for Lithium-ion Batteries

被引:20
|
作者
Liu, Xudong [1 ]
Zhao, Yanming [2 ,3 ]
Dong, Youzhong [3 ]
Fan, Qinghua [3 ]
Kuang, Quan [3 ]
Liang, Zhiyong [1 ]
Lin, Xinghao [1 ]
Han, Wei [1 ]
Li, Qidong [3 ]
Wen, Mingming [3 ]
机构
[1] S China Univ Technol, Sch Mat Sci & Engn, Guangzhou 510640, Guangdong, Peoples R China
[2] S China Univ Technol, State Key Lab Luminescent Mat & Devices, Guangzhou 510640, Guangdong, Peoples R China
[3] S China Univ Technol, Sch Phys, Guangzhou 510640, Guangdong, Peoples R China
关键词
One dimensional nanostructure; Li2MoO4; Sol-gel method; Carbon-coating Citric acid; Formation mechanism; LI-ION; MOLYBDENUM(VI) COMPLEX; CATHODE MATERIAL; CYCLE LIFE; OXIDE; INTERCALATION; NANOMATERIALS; NANOTUBE; LIMN2O4; CAMOO4;
D O I
10.1016/j.electacta.2015.05.174
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
One dimensional Li2MoO4 nanostructures including nanorods and nanotubes have been successfully fabricated via a simple sol-gel method adding Li2CO3 and MoO3 powders into distilled water with citric acid as an assistant agent and carbon source. Our experimental results show that the formation of the one dimensional nanostructure morphology is evaporation and crystallization process with self-adjusting into a rod-like hexagonal cross-section structure, while the citric acid played an important role during the formation of Li2MoO4 nanotubes under the acidic environment by capping, stabilizing the [1010) facet of Li2MoO4 structure and controlling the concentration of Ir (pH value) of the aqueous solution. Finally, basic electrochemical performance of these one dimensional Li2MoO4 nanostructures including nanorods and nanotubes evaluated as anode materials for lithium-ion batteries (LIBs) are discussed, for comparison, the properties of carbon-free powder sample synthesized by solid-state reaction are also displayed. Experimental results show that different morphology and carbon-coating on the surface have an important influence on electrochemical performance. (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:315 / 326
页数:12
相关论文
共 50 条
  • [21] Microwave synthesis of Li2FeSiO4 cathode materials for lithium-ion batteries
    Peng, Zhong Dong
    Cao, Yan Bing
    Hu, Guo Rong
    Du, Ke
    Gao, Xu Guang
    Xiao, Zheng Wei
    CHINESE CHEMICAL LETTERS, 2009, 20 (08) : 1000 - 1004
  • [22] Anodically prepared TiO2 Micro and Nanostructures as Anode Materials for Lithium-ion Batteries
    Kim, Yong-Tae
    Choi, Jinsub
    APPLIED CHEMISTRY FOR ENGINEERING, 2021, 32 (03): : 243 - 252
  • [23] Improved Electrochemical Performance of Spherical Li2FeSiO4/C Cathode Materials via Mn Doping for Lithium-Ion Batteries
    Yi, Liling
    Wang, Xianyou
    Wang, Gang
    Bai, Yansong
    Liu, Meihong
    Wang, Xuan
    Yu, Ruizhi
    ELECTROCHIMICA ACTA, 2016, 222 : 1354 - 1364
  • [24] Electrospun graphene@SnO2 nanofibers as anode materials with excellent electrochemical performance for lithium-ion batteries
    Mo, Junxiang
    Li, Jun
    Li, Yashan
    Tang, Jianguo
    Lee, Soowohn
    COLLOIDS AND SURFACES A-PHYSICOCHEMICAL AND ENGINEERING ASPECTS, 2025, 711
  • [25] Nanophase MnV2O4 particles as anode materials for lithium-ion batteries
    Wang, Xiaowei
    Jia, Ziqi
    Zhang, Jiafeng
    Ou, Xing
    Zhang, Bao
    Feng, Jianmin
    Hou, Feng
    Liang, Ji
    JOURNAL OF ALLOYS AND COMPOUNDS, 2021, 852
  • [26] Solvothermal synthesis and electrochemical performance of Li2MnSiO4/C cathode materials for lithium ion batteries
    Wang, Yan-Chao
    Zhao, Shi-Xi
    Zhai, Peng-Yuan
    Li, Fang
    Nan, Ce-Wen
    JOURNAL OF ALLOYS AND COMPOUNDS, 2014, 614 : 271 - 276
  • [27] Solid-state synthesis and electrochemical performance of Ce-doped Li4Ti5O12 anode materials for lithium-ion batteries
    Zhou, T. P.
    Feng, X. Y.
    Guo, X.
    Wu, W. W.
    Cheng, S.
    Xiang, H. F.
    ELECTROCHIMICA ACTA, 2015, 174 : 369 - 375
  • [28] Synthesis of carbon-coated Li3VO4 and its high electrochemical performance as anode material for lithium-ion batteries
    Liang, Zhiyong
    Zhao, Yanming
    Ouyang, Liuzhang
    Dong, Youzhong
    Kuang, Quan
    Lin, Xinghao
    Liu, Xudong
    Yan, Lin
    JOURNAL OF POWER SOURCES, 2014, 252 : 244 - 247
  • [29] Electrochemical characteristics of pyrrhotine as anode material for lithium-ion batteries
    Zheng, Xiaodong
    JOURNAL OF ALLOYS AND COMPOUNDS, 2016, 661 : 483 - 489
  • [30] Synthesis and Electrochemical Performance of LiTi2(PO4)3/C Anode for Aqueous Lithium-ion Batteries
    Zhao Ping
    Wen Yuehua
    Cheng Jie
    Shen Yaju
    Cao Gaoping
    Yang Yusheng
    CHEMICAL JOURNAL OF CHINESE UNIVERSITIES-CHINESE, 2015, 36 (06): : 1180 - 1186