Analysis of holographic polymer-dispersed liquid crystals (HPDLCs) for tunable low frequency diffractive optical elements recording

被引:14
作者
Fernandez, R. [1 ]
Gallego, S. [1 ,2 ]
Marquez, A. [1 ,2 ]
Frances, J. [1 ,2 ]
Martinez, F. J. [1 ,2 ]
Pascual, I. [1 ,3 ]
Belendez, A. [1 ,2 ]
机构
[1] Univ Alicante, Inst Univ Fis Aplicada Ciencias & Tecnol, Apartado 99, E-03080 Alicante, Spain
[2] Univ Alicante, Dept Fis Ingn Sistemas & Teoria Senal, Apartado 99, E-03080 Alicante, Spain
[3] Univ Alicante, Dept Opt Farmacol & Anat, POB 99, E-03080 Alicante, Spain
关键词
Polymer dispersed liquid crystals; Holographic recording materials; Photopolymer formulation; Electro-optical polymer devices; SPATIAL-FREQUENCY; H-PDLC; PHOTOPOLYMER; LIGHT; COMPOSITES; COMPONENT;
D O I
10.1016/j.optmat.2017.12.045
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Holographic polymer dispersed liquid crystals (HPDLCs) are the result of the optimization of the photopolymer fabrication techniques. They are made by recording in a photopolymerization induced phase separation process (PIPS) in which the liquid crystal molecules diffuse to dark zones in the diffraction grating originated. Thanks to the addition of liquid crystal molecules to the composition, this material has a dynamic behavior by reorientation of the liquid crystal molecules applying an electrical field. In this sense, it is possible to use this material to make dynamic devices. In this work, we study the behavior of this material working in low frequencies with different spatial periods of blazed gratings, a sharp profile whose recording is possible thanks to the addition of a Holoeye LCoS-Pluto spatial light modulator with a resolution of 1920 x 1080 pixels (HD) and a pixel size of 8 x 8 mu m(2). This device allows us to have an accurate and dynamic control of the phase and amplitude of the recording beam. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:295 / 301
页数:7
相关论文
共 28 条
[1]  
[Anonymous], 2000, Holographic Data Storage
[2]   Holographic polymer-dispersed liquid crystals (H-PDLCs) [J].
Bunning, TJ ;
Natarajan, LV ;
Tondiglia, VP ;
Sutherland, RL .
ANNUAL REVIEW OF MATERIALS SCIENCE, 2000, 30 :83-115
[3]   Monomer diffusion rates in photopolymer material. Part I. Low spatial frequency holographic gratings [J].
Close, C. E. ;
Gleeson, M. R. ;
Sheridan, J. T. .
JOURNAL OF THE OPTICAL SOCIETY OF AMERICA B-OPTICAL PHYSICS, 2011, 28 (04) :658-666
[4]   Fast-response and scattering-free polymer network liquid crystals for infrared light modulators [J].
Fan, YH ;
Lin, YH ;
Ren, HW ;
Gauza, S ;
Wu, ST .
APPLIED PHYSICS LETTERS, 2004, 84 (08) :1233-1235
[5]   Influence of the spatial frequency on the diffractive optical elements fabrication in PDLCs [J].
Fernandez, R. ;
Fenoll, S. ;
Gallego, S. ;
Marquez, A. ;
Frances, J. ;
Fuster, V. Navarro ;
Belendez, A. ;
Pascual, I. .
OPTICS AND PHOTONICS FOR INFORMATION PROCESSING X, 2016, 9970
[6]   Diffractive lenses recorded in absorbent photopolymers [J].
Fernandez, R. ;
Gallego, S. ;
Marquez, A. ;
Frances, J. ;
Navarro-Fuster, V. ;
Pascual, I. .
OPTICS EXPRESS, 2016, 24 (02) :1559-1572
[7]   Blazed Gratings Recorded in Absorbent Photopolymers [J].
Fernandez, Roberto ;
Gallego, Sergi ;
Marquez, Andres ;
Navarro-Fuster, Victor ;
Belendez, Augusto .
MATERIALS, 2016, 9 (03)
[8]   Real-time interferometric characterization of a polyvinyl alcohol based photopolymer at the zero spatial frequency limit [J].
Gallego, S. ;
Marquez, A. ;
Mendez, D. ;
Neipp, C. ;
Ortuno, M. ;
Alvarez, M. ;
Fernandez, E. ;
Belendez, A. .
APPLIED OPTICS, 2007, 46 (30) :7506-7512
[9]   Linearity in the response of photopolymers as optical recording media [J].
Gallego, Sergi ;
Marquez, Andres ;
Guardiola, Francisco J. ;
Riquelme, Marina ;
Fernandez, Roberto ;
Pascual, Inmaculada ;
Belendez, Augusto .
OPTICS EXPRESS, 2013, 21 (09) :10995-11008
[10]   Holographic nanoparticle-polymer composites based on step-growth thiol-ene photopolymerization [J].
Hata, Eiji ;
Mitsube, Ken ;
Momose, Keisuke ;
Tomita, Yasuo .
OPTICAL MATERIALS EXPRESS, 2011, 1 (02) :207-222