Strange nonchaotic attractors for computation

被引:28
作者
Aravindh, M. Sathish [1 ,2 ]
Venkatesan, A. [1 ]
Lakshmanan, M. [2 ]
机构
[1] Nehru Mem Coll Autonomous, PG & Res Dept Phys, Tiruchirappalli 621007, Tamil Nadu, India
[2] Bharathidasan Univ, Ctr Nonlinear Dynam, Sch Phys, Tiruchirappalli 620024, Tamil Nadu, India
关键词
IMPLEMENTATION; LOGIC; SYNCHRONIZATION; TRANSITION; DYNAMICS; TORUS; ROUTE; CHAOS; BIRTH; NOISE;
D O I
10.1103/PhysRevE.97.052212
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
We investigate the response of quasiperiodically driven nonlinear systems exhibiting strange nonchaotic attractors (SNAs) to deterministic input signals. We show that if one uses two square waves in an aperiodic manner as input to a quasiperiodically driven double-well Duffing oscillator system, the response of the system can produce logical output controlled by such a forcing. Changing the threshold or biasing of the system changes the output to another logic operation and memory latch. The interplay of nonlinearity and quasiperiodic forcing yields logical behavior, and the emergent outcome of such a system is a logic gate. It is further shown that the logical behaviors persist even for an experimental noise floor. Thus the SNA turns out to be an efficient tool for computation.
引用
收藏
页数:9
相关论文
共 65 条
[1]  
[Anonymous], 1980, The art of electronics
[2]  
[Anonymous], 1992, PHYS REV A
[3]  
Ashwin P, 2004, PHYS REV E, V70, DOI 10.1103/PhysRevE.70.026203
[4]   Discrete computation using a perturbed heteroclinic network [J].
Ashwin, P ;
Borresen, J .
PHYSICS LETTERS A, 2005, 347 (4-6) :208-214
[5]   Experimental observation of dynamics near the torus-doubling terminal critical point [J].
Bezruchko, BP ;
Kuznetsov, SP ;
Seleznev, YP .
PHYSICAL REVIEW E, 2000, 62 (06) :7828-7830
[6]   Dynamical Origin of the Effective Storage Capacity in the Brain's Working Memory [J].
Bick, Christian ;
Rabinovich, Mikhail I. .
PHYSICAL REVIEW LETTERS, 2009, 103 (21)
[7]   QUASIPERIODICALLY FORCED DAMPED PENDULA AND SCHRODINGER-EQUATIONS WITH QUASIPERIODIC POTENTIALS - IMPLICATIONS OF THEIR EQUIVALENCE [J].
BONDESON, A ;
OTT, E ;
ANTONSEN, TM .
PHYSICAL REVIEW LETTERS, 1985, 55 (20) :2103-2106
[8]   Oscillatory Threshold Logic [J].
Borresen, Jon ;
Lynch, Stephen .
PLOS ONE, 2012, 7 (11)
[9]   Logical stochastic resonance [J].
Bulsara, Adi R. ;
Dari, Anna ;
Ditto, William L. ;
Murali, K. ;
Sinha, Sudeshna .
CHEMICAL PHYSICS, 2010, 375 (2-3) :424-434
[10]   Logical stochastic resonance with correlated internal and external noises in a synthetic biological logic block [J].
Dari, Anna ;
Kia, Behnam ;
Bulsara, Adi R. ;
Ditto, William L. .
CHAOS, 2011, 21 (04)