A classical perturbation technique that works even when the linear part of restoring force is zero

被引:10
作者
Hu, H [1 ]
机构
[1] Xiangtan Polytech Univ, Dept Math & Phys, Xiangtan 411201, Hunan, Peoples R China
关键词
D O I
10.1016/s0022-460x(03)00653-9
中图分类号
O42 [声学];
学科分类号
070206 ; 082403 ;
摘要
引用
收藏
页码:1175 / 1179
页数:5
相关论文
共 12 条
[1]   A MODIFIED LINDSTEDT-POINCARE METHOD FOR CERTAIN STRONGLY NONLINEAR OSCILLATORS [J].
CHEUNG, YK ;
CHEN, SH ;
LAU, SL .
INTERNATIONAL JOURNAL OF NON-LINEAR MECHANICS, 1991, 26 (3-4) :367-378
[2]  
Hagedorn P., 1981, NONLINEAR OSCILLATIO
[3]   A classical perturbation technique which is valid for large parameters [J].
Hu, H .
JOURNAL OF SOUND AND VIBRATION, 2004, 269 (1-2) :409-412
[4]  
Mickens RE, 1996, OSCILLATIONS PLANAR
[5]  
Nayfeh A. H., 1979, NONLINEAR OSCILLATIO
[6]  
Nayfeh A. H., 1981, Introduction to Perturbation Techniques
[7]  
Rao S.S., 2011, MECH VIBRATIONS, V5
[8]   A PERTURBATION TECHNIQUE THAT WORKS EVEN WHEN THE NONLINEARITY IS NOT SMALL [J].
SENATOR, M ;
BAPAT, CN .
JOURNAL OF SOUND AND VIBRATION, 1993, 164 (01) :1-27
[9]  
Thomson W. T., 1981, THEORY VIBRATION APP
[10]  
Tse F.S., 1978, Mechanical vibrations: theory and applications