A novel approach to develop aluminum matrix nano-composite employing friction stir welding technique

被引:140
作者
Bahrami, Mohsen [1 ]
Dehghani, Kamran [1 ]
Givi, Mohammad Kazem Besharati [2 ]
机构
[1] Amirkabir Univ Technol, Fac Min & Mat Engn, Tehran, Iran
[2] Univ Tehran, Dept Mech Engn, Tehran, Iran
关键词
Friction stir welding; Aluminum alloy; SiC; Aluminum matrix nano-composite; Mechanical properties; TOOL PIN PROFILE; MECHANICAL-PROPERTIES; SIC PARTICLES; PROCESS PARAMETERS; MICROSTRUCTURE; FABRICATION; TENSILE; SPEED;
D O I
10.1016/j.matdes.2013.07.006
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
The main object of the present study is to investigate the effect of nano-sized SiC particle on the mechanical properties of the friction stir welding (FSW) joints. Prior to FSW, nano-sized SiC particles were incorporated into the joint line. A combination of three rotational speeds and three traveling speeds were applied. Microstructural evaluation using optical microscopy (OM) and scanning electron microscopy (SEM) revealed a banded structure consisting of particle-rich and particle-free regions in stir zone (SZ). The joints fabricated with rotational speed of 1250 rpm and traveling speeds of 40 and 50 mm/min, exhibited the highest mechanical properties. Owing to the presence of SiC nano-particles, at 1250 rpm and 40 mm/min, ultimate tensile strength (UTS) and percentage of elongation were improved by 31% and 76.1%, respectively. Significant increase in UTS and percentage of elongation were attributed to the pinning effect and increased nucleation sites associated with SiC nano-particles. Moreover, reinforcement particles resulted in breaking of primary grains. On the other hand, at 1250 rpm and 40 mm/min, SiC-included specimen showed superior ductility to SiC-free specimen. The fracture morphologies were in good agreement with corresponding ductility results. (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:217 / 225
页数:9
相关论文
共 31 条
[1]   Microstructure and tribological performance of an aluminium alloy based hybrid composite produced by friction stir processing [J].
Alidokht, S. A. ;
Abdollah-zadeh, A. ;
Soleymani, S. ;
Assadi, H. .
MATERIALS & DESIGN, 2011, 32 (05) :2727-2733
[2]  
[Anonymous], 2007, ANN BOOK ASTM STAND, P313
[3]  
[Anonymous], 2004, RECRYSTALIZATION REL
[4]   Effect of rotational speed and probe profile on microstructure and hardness of AZ31/Al2O3 nanocomposites fabricated by friction stir processing [J].
Azizieh, M. ;
Kokabi, A. H. ;
Abachi, P. .
MATERIALS & DESIGN, 2011, 32 (04) :2034-2041
[5]   Investigation of mechanical properties of Cu/SiC composite fabricated by FSP: Effect of SiC particles' size and volume fraction [J].
Barmouz, M. ;
Asadi, P. ;
Givi, M. K. Besharati ;
Taherishargh, M. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2011, 528 (03) :1740-1749
[6]   Fabrication of in situ Cu/SiC composites using multi-pass friction stir processing: Evaluation of microstructural, porosity, mechanical and electrical behavior [J].
Barmouz, Mohsen ;
Givi, Mohammad Kazem Besharati .
COMPOSITES PART A-APPLIED SCIENCE AND MANUFACTURING, 2011, 42 (10) :1445-1453
[7]   On the role of processing parameters in producing Cu/SiC metal matrix composites via friction stir processing: Investigating microstructure, microhardness, wear and tensile behavior [J].
Barmouz, Mohsen ;
Givi, Mohammad Kazem Besharati ;
Seyfi, Javad .
MATERIALS CHARACTERIZATION, 2011, 62 (01) :108-117
[8]   Effect of friction stir welding on microstructure, tensile and fatigue properties of the AA7005/10 vol.%Al2O3p composite [J].
Ceschini, L. ;
Boromei, I. ;
Minak, G. ;
Morrri, A. ;
Tarterini, F. .
COMPOSITES SCIENCE AND TECHNOLOGY, 2007, 67 (3-4) :605-615
[9]   Microstructure and mechanical properties of friction stir welded AA6063-B4C metal matrix composites [J].
Chen, X-G. ;
da Silva, M. ;
Gougeon, P. ;
St-Georges, L. .
MATERIALS SCIENCE AND ENGINEERING A-STRUCTURAL MATERIALS PROPERTIES MICROSTRUCTURE AND PROCESSING, 2009, 518 (1-2) :174-184
[10]   Investigating effects of process parameters on microstructural and mechanical properties of Al5052/SiC metal matrix composite fabricated via friction stir processing [J].
Dolatkhah, A. ;
Golbabaei, P. ;
Givi, M. K. Besharati ;
Molaiekiya, F. .
MATERIALS & DESIGN, 2012, 37 :458-464