Nanoscale piezoelectric response of ZnO nanowires measured using a nanoindentation technique

被引:60
作者
Broitman, Esteban [1 ]
Soomro, Muhammad Yousuf [2 ]
Lu, Jun [1 ]
Willander, Magnus [2 ]
Hultman, Lars [1 ]
机构
[1] Linkoping Univ, IFM, Thin Film Phys Div, SE-58183 Linkoping, Sweden
[2] Linkoping Univ, ITN, SE-60174 Norkoping, Sweden
关键词
NANOSTRUCTURES; ARRAYS;
D O I
10.1039/c3cp50915j
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
We report the piezoelectric properties of ZnO nanowires (NWs) obtained by using a nanoindenter with a conductive boron-doped diamond tip. The direct piezoelectric effect was measured by performing nanoindentations under load control, and the generated piezoelectric voltage was characterized as a function of the applied loads in the range 0.2-6 mN. The converse piezoelectric effect was measured by applying a DC voltage to the sample while there was a low applied force to allow the tip being always in physical contact with the NWs. Vertically aligned ZnO NWs were grown on inexpensive, flexible, and disposable paper substrates using a template-free low temperature aqueous chemical growth method. When using the nanoindenter to measure the direct piezoelectric effect, piezopotential values of up to 26 mV were generated. Corresponding measurement of the converse piezoelectric effect gave an effective piezoelectric coefficient d(33)(eff) of similar to 9.2 pm V-1. The ZnO NWs were also characterized using scanning electron microscopy, X-ray diffraction, and high-resolution transmission electron microscopy. The new nanoindentation approach provides a straightforward method to characterize piezoelectric material deposited on flexible and disposable substrates for the next generation of nanodevices.
引用
收藏
页码:11113 / 11118
页数:6
相关论文
共 32 条
[1]   Recent advances in ZnO nanostructures and thin films for biosensor applications: Review [J].
Arya, Sunil K. ;
Saha, Shibu ;
Ramirez-Vick, Jaime E. ;
Gupta, Vinay ;
Bhansali, Shekhar ;
Singh, Surinder P. .
ANALYTICA CHIMICA ACTA, 2012, 737 :1-21
[2]   Edge-released, piezoelectric MEMS acoustic transducers in array configuration [J].
Chen, Shih-Jui ;
Choe, Youngki ;
Baumgartel, Lukas ;
Lin, Anderson ;
Kim, Eun Sok .
JOURNAL OF MICROMECHANICS AND MICROENGINEERING, 2012, 22 (02)
[3]   The origin of the high conductivity of poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT- PSS) plastic electrodes [J].
Crispin, X. ;
Jakobsson, F. L. E. ;
Crispin, A. ;
Grim, P. C. M. ;
Andersson, P. ;
Volodin, A. ;
van Haesendonck, C. ;
Van der Auweraer, M. ;
Salaneck, W. R. ;
Berggren, M. .
CHEMISTRY OF MATERIALS, 2006, 18 (18) :4354-4360
[4]   Power sources for nanotechnology [J].
Curtright, Aimee E. ;
Bouwman, Peter J. ;
Wartena, Ryan C. ;
Swider-Lyons, Karen E. .
INTERNATIONAL JOURNAL OF NANOTECHNOLOGY, 2004, 1 (1-2) :226-239
[5]   Piezoelectric constants for ZnO calculated using classical polarizable core-shell potentials [J].
Dai, Shuangxing ;
Dunn, Martin L. ;
Park, Harold S. .
NANOTECHNOLOGY, 2010, 21 (44)
[6]   A Review of Mechanical and Electromechanical Properties of Piezoelectric Nanowires [J].
Espinosa, Horacio D. ;
Bernal, Rodrigo A. ;
Minary-Jolandan, Majid .
ADVANCED MATERIALS, 2012, 24 (34) :4656-4675
[7]   Template-assisted large-scale ordered arrays of ZnO pillars for optical and piezoelectric applications [J].
Fan, HJ ;
Lee, W ;
Hauschild, R ;
Alexe, M ;
Le Rhun, G ;
Scholz, R ;
Dadgar, A ;
Nielsch, K ;
Kalt, H ;
Krost, A ;
Zacharias, M ;
Gösele, U .
SMALL, 2006, 2 (04) :561-568
[8]  
Freund L.B., 2003, THIN FILM MAT
[9]   Flexible Piezoelectric ZnO-Paper Nanocomposite Strain Sensor [J].
Gullapalli, Hemtej ;
Vemuru, Venkata S. M. ;
Kumar, Ashavani ;
Botello-Mendez, Andres ;
Vajtai, Robert ;
Terrones, Mauricio ;
Nagarajaiah, Satish ;
Ajayan, Pulickel M. .
SMALL, 2010, 6 (15) :1641-1646
[10]   First-principles study of the dependence of ground-state structural properties on the dimensionality and size of ZnO nanostructures [J].
Li, Chun ;
Guo, Wanlin ;
Kong, Yong ;
Gao, Huajian .
PHYSICAL REVIEW B, 2007, 76 (03)