Upper bounds for the first eigenvalue of the operator Lr and some applications

被引:11
作者
Alencar, H [1 ]
Do Carmo, M
Marques, F
机构
[1] Univ Fed Alagoas, Dept Matemat, BR-57072900 Maceio, AL, Brazil
[2] IMPA, BR-22460320 Rio De Janeiro, Brazil
[3] Cornell Univ, Dept Math, Ithaca, NY 14853 USA
关键词
D O I
10.1215/ijm/1258138155
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We obtain upper bounds for the first eigenvalue of the linearized operator L-r of the r-mean curvature of a compact manifold immersed in a space of constant curvature delta. By the same method, we obtain an upper bound for the first eigenvalue of the stability operator associated to L-r when delta < 0.
引用
收藏
页码:851 / 863
页数:13
相关论文
共 12 条
[1]   STABLE HYPERSURFACES WITH CONSTANT SCALAR CURVATURE [J].
ALENCAR, H ;
DOCARMO, M ;
COLARES, AG .
MATHEMATISCHE ZEITSCHRIFT, 1993, 213 (01) :117-131
[2]   Integral formulas for the r-mean curvature linearized operator of a hypersurface [J].
Alencar, H ;
Colares, AG .
ANNALS OF GLOBAL ANALYSIS AND GEOMETRY, 1998, 16 (03) :203-220
[3]  
Alencar H., 1993, ANN GLOB ANAL GEOM, V11, P387, DOI DOI 10.1007/BF00773553
[4]  
Barbosa JLM, 1997, ANN GLOB ANAL GEOM, V15, P277
[5]  
BARBOSA L, 1988, MATH Z, V197, P123
[6]  
BARBOSA L, 1984, MATH Z, V195, P339
[7]  
ELSOUFI A, 1992, COMMENT MATH HELV, V67, P167
[8]  
GROSJEAN JF, 1995, CR ACAD SCI I-MATH, V321, P323
[9]   Extrinsic upper bound for the first eigenvalue of elliptic operators defined on submanifolds and applications [J].
Grosjean, JF .
COMPTES RENDUS DE L ACADEMIE DES SCIENCES SERIE I-MATHEMATIQUE, 2000, 330 (09) :807-810
[10]   EXTRINSIC UPPER-BOUNDS FOR GAMMA-1 [J].
HEINTZE, E .
MATHEMATISCHE ANNALEN, 1988, 280 (03) :389-402