Lipidoid-Coated Iron Oxide Nanoparticles for Efficient DNA and siRNA delivery

被引:182
作者
Jiang, Shan [1 ,2 ]
Eltoukhy, Ahmed A. [1 ]
Love, Kevin T. [1 ,2 ]
Langer, Robert [1 ,2 ,3 ]
Anderson, Daniel G. [1 ,2 ,3 ]
机构
[1] MIT, David H Koch Inst Integrat Canc Res, Cambridge, MA 02139 USA
[2] MIT, Dept Chem Engn, Cambridge, MA 02139 USA
[3] MIT, Inst Med Engn & Sci, Cambridge, MA 02139 USA
基金
美国国家卫生研究院;
关键词
siRNA delivery; DNA delivery; iron oxide nanoparticle; magnetofection; gene therapy; IN-VIVO; MAGNETIC NANOPARTICLES; GENE DELIVERY; THERAPY; HYPERTHERMIA; SURFACE;
D O I
10.1021/nl304287a
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
The safe, targeted and effective delivery of gene therapeutics remains a significant barrier to their broad clinical application. Here we develop a magnetic nucleic acid delivery system composed of iron oxide nanoparticles and cationic lipid-like materials termed lipidoids. Coated nanoparticles are capable of delivering DNA and siRNA to cells in culture. The mean hydrodynamic size of these nanoparticles was systematically varied and optimized for delivery. While nanoparticles of different sizes showed similar siRNA delivery efficiency, nanoparticles of 50-100 nm displayed optimal DNA delivery activity. The application of an external magnetic field significantly enhanced the efficiency of nucleic acid delivery, with performance exceeding that of the commercially available lipid-based reagent, Lipofectamine 2000. The iron oxide nanoparticle delivery platform developed here offers the potential for magnetically guided targeting, as well as an opportunity to combine gene therapy with MM imaging and magnetic hyperthermia.
引用
收藏
页码:1059 / 1064
页数:6
相关论文
共 28 条
[1]   Ultrastable Iron Oxide Nanoparticle Colloidal Suspensions Using Dispersants with Catechol-Derived Anchor Groups [J].
Amstad, Esther ;
Gillich, Torben ;
Bilecka, Idalia ;
Textor, Marcus ;
Reimhult, Erik .
NANO LETTERS, 2009, 9 (12) :4042-4048
[2]   Semi-automated synthesis and screening of a large library of degradable cationic polymers for gene delivery [J].
Anderson, DG ;
Lynn, DM ;
Langer, R .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2003, 42 (27) :3153-3158
[3]  
Boal D., 2012, MECH CELL, P624
[4]   Controlled clustering and enhanced stability of polymer-coated magnetic nanoparticles [J].
Ditsch, A ;
Laibinis, PE ;
Wang, DIC ;
Hatton, TA .
LANGMUIR, 2005, 21 (13) :6006-6018
[5]   MAGNETIC TARGETING OF MICROSPHERES IN BLOOD-FLOW [J].
DRISCOLL, CF ;
MORRIS, RM ;
SENYEI, AE ;
WIDDER, KJ ;
HELLER, GS .
MICROVASCULAR RESEARCH, 1984, 27 (03) :353-369
[6]   Poly(allylamine) stabilized iron oxide magnetic nanoparticles [J].
El Khoury, Jouliana M. ;
Caruntu, Daniela ;
O' Connor, Charles J. ;
Jeong, Kwang-Un ;
Cheng, Stephen Z. D. ;
Hu, Jun .
JOURNAL OF NANOPARTICLE RESEARCH, 2007, 9 (05) :959-964
[7]   Biological consequences of tightly bent DNA: The other life of a macromolecular celebrity [J].
Garcia, Hernan G. ;
Grayson, Paul ;
Han, Lin ;
Inamdar, Mandar ;
Kondev, Jane ;
Nelson, Philip C. ;
Phillips, Rob ;
Widom, Jonathan ;
Wiggins, Paul A. .
BIOPOLYMERS, 2007, 85 (02) :115-130
[8]   Synthesis of magnetoliposomes with monodisperse iron oxide nanocrystal cores for hyperthermia [J].
Gonzales, M ;
Krishnan, KM .
JOURNAL OF MAGNETISM AND MAGNETIC MATERIALS, 2005, 293 (01) :265-270
[9]   POLAR, APROTIC-SOLVENTS AND THE HYDROPHOBIC EFFECT [J].
GRECO, FA .
JOURNAL OF PHYSICAL CHEMISTRY, 1984, 88 (14) :3132-3133
[10]   Synthesis and surface engineering of iron oxide nanoparticles for biomedical applications [J].
Gupta, AK ;
Gupta, M .
BIOMATERIALS, 2005, 26 (18) :3995-4021