On Parametric Gevrey Asymptotics for Singularly Perturbed Partial Differential Equations with Delays

被引:9
作者
Lastra, Alberto [1 ]
Malek, Stephane [2 ]
机构
[1] Univ Alcala, Dept Fis & Matemat, Madrid 28871, Spain
[2] Univ Lille 1, Lab Paul Painleve, F-59655 Villeneuve Dascq, France
关键词
FORMAL SOLUTIONS; SUMMABILITY;
D O I
10.1155/2013/723040
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We study a family of singularly perturbed. q-difference-differential equations in the complex domain. We provide sectorial holomorphic solutions in the perturbation parameter epsilon. Moreover, we achieve the existence of a common formal power series in.. which represents each actual solution and establish q-Gevrey estimates involved in this representation. The proof of the main result rests on a new version of the so-called Malgrange-Sibuya theorem regarding. q-Gevrey asymptotics. A particular Dirichlet like series is studied on the way.
引用
收藏
页数:18
相关论文
共 35 条
  • [1] Andrews George E, 1999, Encyclopedia of Mathematics and its Applications, V71, DOI DOI 10.1017/CBO9781107325937
  • [2] [Anonymous], 2003, Gaz. Math. Soc. Math. Fr
  • [3] Apostol T., 1990, Modular Functions and Dirichlet Series in Number Theory (Graduate Texts in Mathematics), Vvol 41
  • [4] Augustynowicz A., 1999, AEQUATIONES MATH, V58, P143
  • [5] Besicovitch A.S., 1954, Almost Periodic Functions, VVolume 4
  • [6] BOHR H., 1947, Almost Periodic Functions
  • [7] WHITNEY EXTENSION THEOREM FOR NONQUASIANALYTIC CLASSES OF ULTRADIFFERENTIABLE FUNCTIONS
    BONET, J
    BRAUN, RW
    MEISE, R
    TAYLOR, BA
    [J]. STUDIA MATHEMATICA, 1991, 99 (02) : 155 - 184
  • [8] Multisummability for some classes of difference equations
    Braaksma, BLJ
    Faber, BF
    [J]. ANNALES DE L INSTITUT FOURIER, 1996, 46 (01) : 183 - +
  • [9] Summation of formal solutions of a class of linear difference equations
    Braaksma, BLJ
    Faber, BF
    Immink, GK
    [J]. PACIFIC JOURNAL OF MATHEMATICS, 2000, 195 (01) : 35 - 65
  • [10] Monomial summability and doubly singular differential equations
    Canalis-Durand, Mireille
    Mozo-Fernandez, Jorge
    Schafke, Reinhard
    [J]. JOURNAL OF DIFFERENTIAL EQUATIONS, 2007, 233 (02) : 485 - 511