Chiral symmetry breaking patterns in the UL(n) x UR(n) meson model

被引:6
作者
Fejos, G. [1 ]
机构
[1] RIKEN, Nishina Ctr, Theoret Res Div, Wako, Saitama 3510198, Japan
来源
PHYSICAL REVIEW D | 2013年 / 87卷 / 05期
基金
日本学术振兴会;
关键词
EQUATION;
D O I
10.1103/PhysRevD.87.056006
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
Chiral symmetry breaking patterns are investigated in the U-L(n) x U-R(n) meson model. It is shown that new classes of minima of the effective potential belonging to the center of the Lie algebra exist for arbitrary flavor number n. The true ground state of the system is searched nonperturbatively and although multiple local minima of the effective potential may exist, it is argued that in regions of the parameter space applicable for the strong interaction, strictly a U-L(n) x U-R(n) -> U-V(n) spontaneous symmetry breaking is possible. The reason behind this is the existence of a discrete subset of axial symmetries, which connects various U-V(n) symmetric vacua of the theory. The results are in agreement with the Vafa-Witten theorem of QCD, illustrating that it remains valid, even without gauge fields, for an effective model of the strong interaction. DOI: 10.1103/PhysRevD.87.056006
引用
收藏
页数:10
相关论文
共 32 条
[1]   Chiral symmetry restoration, the eigenvalue density of the Dirac operator, and the axial U(1) anomaly at finite temperature [J].
Aoki, Sinya ;
Fukaya, Hidenori ;
Taniguchi, Yusuke .
PHYSICAL REVIEW D, 2012, 86 (11)
[2]   Coarse graining and first order phase transitions [J].
Berges, J ;
Tetradis, N ;
Wetterich, C .
PHYSICS LETTERS B, 1997, 393 (3-4) :387-394
[3]   Equation of state and coarse grained free energy for matrix models [J].
Berges, J ;
Wetterich, C .
NUCLEAR PHYSICS B, 1997, 487 (03) :675-720
[4]  
Bilic N, 1999, EUR PHYS J C, V6, P515, DOI 10.1007/s100520050362
[5]  
Espinosa J. R., ARXIV12116428
[6]   Chiral nonet mixing in ππ scattering [J].
Fariborz, Amir H. ;
Jora, Renata ;
Schechter, Joseph ;
Shahid, M. Naeem .
PHYSICAL REVIEW D, 2011, 84 (11)
[7]   Finite temperature symmetry restoration in the UL(3) x UR(3) linear sigma model from a large-n approximation [J].
Fejos, G. ;
Patkos, A. .
PHYSICAL REVIEW D, 2012, 85 (11)
[8]   Spontaneously broken ground states of the U(n)L x U(n)R linear sigma model at large n [J].
Fejos, G. ;
Patkos, A. .
PHYSICAL REVIEW D, 2011, 84 (03)
[9]   Second-order and fluctuation-induced first-order phase transitions with functional renormalization group equations [J].
Fukushima, Kenji ;
Kamikado, Kazuhiko ;
Klein, Bertram .
PHYSICAL REVIEW D, 2011, 83 (11)
[10]   The phase diagram of dense QCD [J].
Fukushima, Kenji ;
Hatsuda, Tetsuo .
REPORTS ON PROGRESS IN PHYSICS, 2011, 74 (01)