Background Subtraction using Local SVD Binary Pattern

被引:23
作者
Guo, Lili [1 ]
Xu, Dan [1 ]
Qiang, Zhenping [1 ,2 ]
机构
[1] Yunnan Univ, Sch Informat & Engn, Kunming, Peoples R China
[2] Southwest Forestry Univ, Kunming, Yunnan, Peoples R China
来源
PROCEEDINGS OF 29TH IEEE CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION WORKSHOPS, (CVPRW 2016) | 2016年
关键词
MIXTURE;
D O I
10.1109/CVPRW.2016.148
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Background subtraction is a basic problem for change detection in videos and also the first step of high-level computer vision applications. Most background subtraction methods rely on color and texture feature. However, due to illuminations changes in different scenes and affections of noise pixels, those methods often resulted in high false positives in a complex environment. To solve this problem, we propose an adaptive background subtraction model which uses a novel Local SVD Binary Pattern (named LSBP) feature instead of simply depending on color intensity. This feature can describe the potential structure of the local regions in a given image, thus, it can enhance the robustness to illumination variation, noise, and shadows. We use a sample consensus model which is well suited for our LSBP feature. Experimental results on CDnet 2012 dataset demonstrate that our background subtraction method using LSBP feature is more effective than many state-of-the-art methods.
引用
收藏
页码:1159 / 1167
页数:9
相关论文
共 26 条
[1]  
[Anonymous], 2013, 9 WORKSHOP VISAO COM
[2]   ViBe: A Universal Background Subtraction Algorithm for Video Sequences [J].
Barnich, Olivier ;
Van Droogenbroeck, Marc .
IEEE TRANSACTIONS ON IMAGE PROCESSING, 2011, 20 (06) :1709-1724
[3]   Change Detection in Feature Space using Local Binary Similarity Patterns [J].
Bilodeau, Guillaume-Alexandre ;
Jodoin, Jean-Philippe ;
Saunier, Nicolas .
2013 INTERNATIONAL CONFERENCE ON COMPUTER AND ROBOT VISION (CRV), 2013, :106-112
[4]   Traditional and recent approaches in background modeling for foreground detection: An overview [J].
Bouwmans, Thierry .
COMPUTER SCIENCE REVIEW, 2014, 11-12 :31-66
[5]   WLD: A Robust Local Image Descriptor [J].
Chen, Jie ;
Shan, Shiguang ;
He, Chu ;
Zhao, Guoying ;
Pietikainen, Matti ;
Chen, Xilin ;
Gao, Wen .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2010, 32 (09) :1705-1720
[6]   Background and foreground modeling using nonparametric kernel density estimation for visual surveillance [J].
Elgammal, A ;
Duraiswami, R ;
Harwood, D ;
Davis, LS .
PROCEEDINGS OF THE IEEE, 2002, 90 (07) :1151-1163
[7]  
Goyette N., 2012, 2012 IEEE Computer Society Conference on Computer Vision and Pattern Recognition Workshops (CVPR Workshops), DOI 10.1109/CVPRW.2012.6238919
[8]   A texture-based method for modeling the background and detecting moving objects [J].
Heikkilä, M ;
Pietikäinen, M .
IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2006, 28 (04) :657-662
[9]   Description of interest regions with local binary patterns [J].
Heikkila, Marko ;
Pietikainen, Matti ;
Schmid, Cordelia .
PATTERN RECOGNITION, 2009, 42 (03) :425-436
[10]  
Hofmann Martin., 2012, 2012 IEEE COMPUTER S, P38, DOI DOI 10.1109/CVPRW.2012.6238925