Analysis of Pattern Recognition Algorithms using Associative Memory Approach: A Comparative Study between the Hopfield Network and Distributed Hierarchical Graph Neuron (DHGN)

被引:3
作者
Amin, A. H. Muhamad [1 ]
Mahmood, R. A. Raja [1 ]
Khan, A. I. [1 ]
机构
[1] Monash Univ, Clayton Sch IT, Clayton, Vic 3168, Australia
来源
8TH IEEE INTERNATIONAL CONFERENCE ON COMPUTER AND INFORMATION TECHNOLOGY WORKSHOPS: CIT WORKSHOPS 2008, PROCEEDINGS | 2008年
关键词
D O I
10.1109/CIT.2008.Workshops.65
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this paper we conduct a comparative analysis of two associative memory-based pattern recognition algorithms. We compare the established Hopfield network algorithm with our novel Distributed Hierarchical Graph Neuron (DHGN) algorithm. The computational complexity and recall efficiency aspects of these algorithms are discussed. The results show that DHGN offers lower computational complexity with better recall efficiency compared to the Hopfield network.
引用
收藏
页码:153 / 158
页数:6
相关论文
共 19 条
[1]  
Baig ZA, 2006, INT C PATT RECOG, P1050
[2]  
Baqer A, 2005, LECT NOTES COMPUT SC, V3823, P208
[3]  
Gropp W., 1999, USING MPI 2 ADV FEAT
[4]   Rotation- and scale-independent pattern recognition through optimization [J].
Hemminger, TL ;
PomalazRaez, CA .
PATTERN RECOGNITION, 1996, 29 (03) :487-495
[5]  
HOPFIELD JJ, 1985, BIOL CYBERN, V52, P141
[6]   NEURAL NETWORKS AND PHYSICAL SYSTEMS WITH EMERGENT COLLECTIVE COMPUTATIONAL ABILITIES [J].
HOPFIELD, JJ .
PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF THE UNITED STATES OF AMERICA-BIOLOGICAL SCIENCES, 1982, 79 (08) :2554-2558
[7]  
KHAN AI, 2008, MOBILE INTELLIGENCE
[8]  
KHAN AI, 2002, P 13 AUSTR C INF SYS
[9]  
Khan AI, 2007, LECT NOTES COMPUT SC, V4830, P705
[10]  
KIM JH, 1992, IEEE INT S CIRC SYST, P2888