Anomalous primes and the elliptic Korselt criterion

被引:4
作者
Babinkostova, L. [1 ]
Bahr, J. C. [2 ]
Kim, Y. H. [3 ]
Neyman, E. [4 ]
Taylor, G. K. [5 ]
机构
[1] Boise State Univ, Dept Math, Boise, ID 83725 USA
[2] Univ Calif Los Angeles, Dept Math, Los Angeles, CA 90095 USA
[3] Columbia Univ, Dept Math, New York, NY 10027 USA
[4] Princeton Univ, Dept Math, Princeton, NJ 08544 USA
[5] Univ Illinois, Dept Math Stat & Comp Sci, Chicago, IL 60607 USA
基金
美国国家科学基金会;
关键词
Elliptic curves; Anomalous primes; Elliptic Korselt numbers;
D O I
10.1016/j.jnt.2019.02.013
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We explore the relationship between elliptic Korselt numbers of Type I, a class of pseudoprimes introduced by Silverman in [10], and anomalous primes. We generalize a result in [10] that gives sufficient conditions for an elliptic Korselt number of Type I to be a product of anomalous primes. Finally, we prove that almost all elliptic Korselt numbers of Type I of the form n = pq are a product of anomalous primes. (C) 2019 Elsevier Inc. All rights reserved.
引用
收藏
页码:108 / 123
页数:16
相关论文
共 12 条
[1]  
[Anonymous], 2018, Mathematica, Version 11.3
[2]  
Babinkostova L., ARXIV171005264V1
[3]  
Broughan K.A, 2001, J INTEGER SEQUENCES, V4
[4]  
David C, 1999, INT MATH RES NOTICES, V1999, P165
[5]  
Deu41 Deuring M., 1941, Abh. Math. Sem. Hamb., V14, P197, DOI 10.1007/BF02940746
[6]  
DONG J, 2002, CURRENT DEV MATH, P179
[7]  
GORDON DM, 1989, MATH COMPUT, V52, P231, DOI 10.1090/S0025-5718-1989-0946604-2
[8]  
Ireland K., 1998, GRADUATE TEXTS MATH, V84
[9]   Anomalous primes of the elliptic curve ED : y2 = x3 + D [J].
Qin, Hourong .
PROCEEDINGS OF THE LONDON MATHEMATICAL SOCIETY, 2016, 112 :415-453
[10]  
Silverman J. H., 1994, Advanced Topics in the Arithmetic of Elliptic Curves, V151