Increasing Cas9-mediated homology-directed repair efficiency through covalent tethering of DNA repair template

被引:180
作者
Aird, Eric J. [1 ,2 ]
Lovendahl, Klaus N. [1 ,2 ]
St Martin, Amber [1 ,2 ,3 ]
Harris, Reuben S. [1 ,2 ,3 ,4 ]
Gordon, Wendy R. [1 ,2 ]
机构
[1] Univ Minnesota, Dept Biochem Mol Biol & Biophys, Minneapolis, MN 55455 USA
[2] Univ Minnesota, Ctr Genome Engn, Minneapolis, MN 55108 USA
[3] Univ Minnesota, Masonic Canc Ctr, Inst Mol Virol, Minneapolis, MN 55455 USA
[4] Univ Minnesota, Howard Hughes Med Inst, Minneapolis, MN 55455 USA
关键词
PROTEIN; ENDONUCLEASE; DOMAIN;
D O I
10.1038/s42003-018-0054-2
中图分类号
Q [生物科学];
学科分类号
07 ; 0710 ; 09 ;
摘要
The CRISPR-Cas9 system is a powerful genome-editing tool in which a guide RNA targets Cas9 to a site in the genome, where the Cas9 nuclease then induces a double-stranded break (DSB). The potential of CRISPR-Cas9 to deliver precise genome editing is hindered by the low efficiency of homology-directed repair (HDR), which is required to incorporate a donor DNA template encoding desired genome edits near the DSB. We present a strategy to enhance HDR efficiency by covalently tethering a single-stranded oligodeoxynucleotide (ssODN) to the Cas9-guide RNA ribonucleoprotein (RNP) complex via a fused HUH endonuclease, thus spatially and temporally co-localizing the DSB machinery and donor DNA. We demonstrate up to a 30-fold enhancement of HDR using several editing assays, including repair of a frameshift and in-frame insertions of protein tags. The improved HDR efficiency is observed in multiple cell types and target loci and is more pronounced at low RNP concentrations.
引用
收藏
页数:6
相关论文
共 27 条
[1]  
Anders C, 2015, METHOD ENZYMOL, V546, P1
[2]   Improving the oral efficacy of recombinant granulocyte colony-stimulating factor and transferrin fusion protein by spacer optimization [J].
Bai, Yun ;
Shen, Wei-Chiang .
PHARMACEUTICAL RESEARCH, 2006, 23 (09) :2116-2121
[3]   Easy quantitative assessment of genome editing by sequence trace decomposition [J].
Brinkman, Eva K. ;
Chen, Tao ;
Amendola, Mario ;
van Steensel, Bas .
NUCLEIC ACIDS RESEARCH, 2014, 42 (22)
[4]   Assembly of CRISPR ribonucleoproteins with biotinylated oligonucleotides via an RNA aptamer for precise gene editing [J].
Carlson-Stevermer, Jared ;
Abdeen, Amr A. ;
Kohlenberg, Lucille ;
Goedland, Madelyn ;
Molugu, Kaivalya ;
Lou, Meng ;
Saha, Krishanu .
NATURE COMMUNICATIONS, 2017, 8
[5]   Enhanced proofreading governs CRISPR-Cas9 targeting accuracy [J].
Chen, Janice S. ;
Dagdas, Yavuz S. ;
Kleinstiver, Benjamin P. ;
Welch, Moira M. ;
Sousa, Alexander A. ;
Harrington, Lucas B. . ;
Sternberg, Samuel H. ;
Joung, J. Keith ;
Yildiz, Ahmet ;
Doudna, Jennifer A. .
NATURE, 2017, 550 (7676) :407-+
[6]   Multiplex Genome Engineering Using CRISPR/Cas Systems [J].
Cong, Le ;
Ran, F. Ann ;
Cox, David ;
Lin, Shuailiang ;
Barretto, Robert ;
Habib, Naomi ;
Hsu, Patrick D. ;
Wu, Xuebing ;
Jiang, Wenyan ;
Marraffini, Luciano A. ;
Zhang, Feng .
SCIENCE, 2013, 339 (6121) :819-823
[7]   Post-translational Regulation of Cas9 during G1 Enhances Homology-Directed Repair [J].
Gutschner, Tony ;
Haemmerle, Monika ;
Genovese, Giannicola ;
Draetta, Giulio F. ;
Chin, Lynda .
CELL REPORTS, 2016, 14 (06) :1555-1566
[8]   A Programmable Dual-RNA-Guided DNA Endonuclease in Adaptive Bacterial Immunity [J].
Jinek, Martin ;
Chylinski, Krzysztof ;
Fonfara, Ines ;
Hauer, Michael ;
Doudna, Jennifer A. ;
Charpentier, Emmanuelle .
SCIENCE, 2012, 337 (6096) :816-821
[9]   lDNA DSB repair pathway choice: an orchestrated handover mechanism [J].
Kakarougkas, A. ;
Jeggo, P. A. .
BRITISH JOURNAL OF RADIOLOGY, 2014, 87 (1035)
[10]   High-fidelity CRISPR-Cas9 nucleases with no detectable genome-wide off-target effects [J].
Kleinstiver, Benjamin P. ;
Pattanayak, Vikram ;
Prew, Michelle S. ;
Tsai, Shengdar Q. ;
Nguyen, Nhu T. ;
Zheng, Zongli ;
Joung, J. Keith .
NATURE, 2016, 529 (7587) :490-+