A Fuzzy C-Means Algorithm for Fingerprint Segmentation

被引:9
作者
Ferreira, Pedro M. [1 ]
Sequeira, Ana F. [1 ]
Rebelo, Ana [1 ]
机构
[1] INESC TEC, Oporto, Portugal
来源
PATTERN RECOGNITION AND IMAGE ANALYSIS (IBPRIA 2015) | 2015年 / 9117卷
关键词
Fingerprint segmentation; Fuzzy C-means clustering; Morphological processing;
D O I
10.1007/978-3-319-19390-8_28
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Fingerprint segmentation is a crucial step of an automatic fingerprint identification system, since an accurate segmentation promote both the elimination of spurious minutiae close to the foreground boundaries and the reduction of the computation time of the following steps. In this paper, a new, and more robust fingerprint segmentation algorithm is proposed. The main novelty is the introduction of a more robust binarization process in the framework, mainly based on the fuzzy C-means clustering algorithm. Experimental results demonstrate significant benchmark progress on three existing FVC datasets.
引用
收藏
页码:245 / 252
页数:8
相关论文
共 9 条
[1]  
[Anonymous], MatLab and octave functions for computer vision and image processing
[2]  
[Anonymous], 2009, HDB FINGERPRINT RECO
[3]  
Bazen A.M., 2001, PROC WORKSHOP CIRCUI, P276
[4]   Segmentation of fingerprint images using linear classifier [J].
Chen, XJ ;
Tian, J ;
Cheng, J ;
Yang, X .
EURASIP JOURNAL ON APPLIED SIGNAL PROCESSING, 2004, 2004 (04) :480-494
[5]  
Fahmy M., 2013, 2013 IEEE INT S SIGN
[6]   Fingerprint segmentation based on an AdaBoost classifier [J].
Liu, Eryun ;
Zhao, Heng ;
Guo, Fangfei ;
Liang, Jimin ;
Tian, Jie .
FRONTIERS OF COMPUTER SCIENCE IN CHINA, 2011, 5 (02) :148-157
[7]  
Suri J.S., 2005, HDB BIOMEDICAL IMA B
[8]  
Watson C.I., 2007, USERS GUIDE NIST BIO
[9]  
Wu CH, 2007, LECT NOTES COMPUT SC, V4642, P1095