Hamilton cycles in sparse locally connected graphs

被引:3
|
作者
van Aardt, Susan A. [1 ]
Burger, Alewyn P. [2 ]
Frick, Marietjie [3 ]
Thomassen, Carsten [4 ]
de Wet, Johan P. [3 ,5 ]
机构
[1] Univ South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
[2] Univ Stellenbosch, Dept Logist, Private Bag X1, ZA-7602 Matieland, South Africa
[3] Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Hatfield, South Africa
[4] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[5] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Locally connected; Hamiltonian; NP-complete; Polynomial time algorithm;
D O I
10.1016/j.dam.2018.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is locally connected if for every nu is an element of V(G) the open neighbourhood N(nu) of nu is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m <= 2n + k log(2) n, but NP-complete if m = 2n + [n(1/k)]. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:276 / 288
页数:13
相关论文
共 50 条
  • [41] Hyper-Hamilton laceable and caterpillar-spannable product graphs
    Lewinter, M
    Widulski, W
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 1997, 34 (11) : 99 - 104
  • [42] Edge bounds in nonhamiltonian k-connected graphs
    Byer, Owen D.
    Smeltzer, Deirdre L.
    DISCRETE MATHEMATICS, 2007, 307 (13) : 1572 - 1579
  • [43] On cubic 2-independent Hamiltonian connected graphs
    Tung-Yang Ho
    Chun-Nan Hung
    Lih-Hsing Hsu
    Journal of Combinatorial Optimization, 2007, 14 : 275 - 294
  • [44] A note on 3-connected cubic planar graphs
    Lu, Xiaoyun
    DISCRETE MATHEMATICS, 2010, 310 (13-14) : 2054 - 2058
  • [45] Forbidden Pairs for Connected Even Factors in Supereulerian Graphs
    Wang, Panpan
    Xiong, Liming
    GRAPHS AND COMBINATORICS, 2023, 39 (04)
  • [46] On cubic 2-independent Hamiltonian connected graphs
    Ho, Tung-Yang
    Hung, Chun-Nan
    Hsu, Lih-Hsing
    JOURNAL OF COMBINATORIAL OPTIMIZATION, 2007, 14 (2-3) : 275 - 294
  • [47] Construction of Hamiltonian cycles in layered cubic planar graphs
    Franzblau, DS
    GRAPHS AND COMBINATORICS, 2002, 18 (02) : 259 - 270
  • [48] Algorithmic complexity of weakly connected Roman domination in graphs
    Chakradhar, Padamutham
    Reddy, Palagiri Venkata Subba
    Himanshu, Khandelwal
    DISCRETE MATHEMATICS ALGORITHMS AND APPLICATIONS, 2022, 14 (03)
  • [49] A study on degree characterization for hamiltonian-connected graphs
    Su, Hsun
    Shih, Yuan-Kang
    Chen, Shih-Yan
    Kao, Shin-Shin
    ARS COMBINATORIA, 2017, 133 : 297 - 316
  • [50] Hamiltonian cycles in linear-convex supergrid graphs
    Hung, Ruo-Wei
    DISCRETE APPLIED MATHEMATICS, 2016, 211 : 99 - 112