Hamilton cycles in sparse locally connected graphs

被引:3
|
作者
van Aardt, Susan A. [1 ]
Burger, Alewyn P. [2 ]
Frick, Marietjie [3 ]
Thomassen, Carsten [4 ]
de Wet, Johan P. [3 ,5 ]
机构
[1] Univ South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
[2] Univ Stellenbosch, Dept Logist, Private Bag X1, ZA-7602 Matieland, South Africa
[3] Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Hatfield, South Africa
[4] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[5] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Locally connected; Hamiltonian; NP-complete; Polynomial time algorithm;
D O I
10.1016/j.dam.2018.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is locally connected if for every nu is an element of V(G) the open neighbourhood N(nu) of nu is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m <= 2n + k log(2) n, but NP-complete if m = 2n + [n(1/k)]. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:276 / 288
页数:13
相关论文
共 50 条
  • [21] Cubic 1-fault-tolerant hamiltonian graphs, Globally 3*-connected graphs, and Super 3-spanning connected graphs
    Kao, Shin-Shin
    Huang, Hua-Min
    Hsu, Kung-Ming
    Hsu, Lih-Hsing
    ARS COMBINATORIA, 2013, 110 : 301 - 322
  • [22] Hamiltonicity of Connected Domination Critical Graphs
    Kaemawichanurat, P.
    Caccetta, L.
    Ananchuen, W.
    ARS COMBINATORIA, 2018, 136 : 127 - 151
  • [23] Hamiltonicity of 4-connected graphs
    Hao Li
    Feng Tian
    Zhi Xia Xu
    Acta Mathematica Sinica, English Series, 2010, 26 : 699 - 710
  • [24] Pancyclicity of Hamiltonian and highly connected graphs
    Keevash, Peter
    Sudakov, Benny
    JOURNAL OF COMBINATORIAL THEORY SERIES B, 2010, 100 (05) : 456 - 467
  • [25] Hamiltonicity of 4-connected graphs
    Li, Hao
    Tian, Feng
    Xu, Zhi Xia
    ACTA MATHEMATICA SINICA-ENGLISH SERIES, 2010, 26 (04) : 699 - 710
  • [26] Hamiltonicity of 4-connected Graphs
    Hao LI LRI
    ActaMathematicaSinica(EnglishSeries), 2010, 26 (04) : 699 - 710
  • [27] Mutually orthogonal hamiltonian connected graphs
    Ho, Tung-Yang
    Lin, Cheng-Kuan
    Tan, Jimmy J. M.
    Hsu, Lih-Hsing
    APPLIED MATHEMATICS LETTERS, 2009, 22 (09) : 1429 - 1431
  • [28] Hardness Results of Connected Power Domination for Bipartite Graphs and Chordal Graphs
    Goyal, Pooja
    Panda, B. S.
    COMBINATORIAL OPTIMIZATION AND APPLICATIONS, COCOA 2021, 2021, 13135 : 653 - 667
  • [29] Connected [1,2]-Sets in Graphs
    Zhang, Chao
    Zhao, Chengye
    THEORETICAL COMPUTER SCIENCE (NCTCS 2018), 2018, 882 : 93 - 98
  • [30] Linear separation of connected dominating sets in graphs
    Chiarelli, Nina
    Milanic, Martin
    ARS MATHEMATICA CONTEMPORANEA, 2019, 16 (02) : 487 - 525