Hamilton cycles in sparse locally connected graphs

被引:3
|
作者
van Aardt, Susan A. [1 ]
Burger, Alewyn P. [2 ]
Frick, Marietjie [3 ]
Thomassen, Carsten [4 ]
de Wet, Johan P. [3 ,5 ]
机构
[1] Univ South Africa, UNISA, Dept Math Sci, POB 392, ZA-0003 Pretoria, South Africa
[2] Univ Stellenbosch, Dept Logist, Private Bag X1, ZA-7602 Matieland, South Africa
[3] Univ Pretoria, Dept Math & Appl Math, Private Bag X20, ZA-0028 Hatfield, South Africa
[4] Tech Univ Denmark, Dept Appl Math & Comp Sci, DK-2800 Lyngby, Denmark
[5] DST NRF Ctr Excellence Math & Stat Sci CoE MaSS, Johannesburg, South Africa
基金
新加坡国家研究基金会;
关键词
Locally connected; Hamiltonian; NP-complete; Polynomial time algorithm;
D O I
10.1016/j.dam.2018.10.031
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
A graph G is locally connected if for every nu is an element of V(G) the open neighbourhood N(nu) of nu is nonempty and induces a connected graph in G. We characterize locally connected graphs of order n with less than 2n edges and show that for any natural number k the Hamilton Cycle Problem for locally connected graphs of order n with m edges is polynomially solvable if m <= 2n + k log(2) n, but NP-complete if m = 2n + [n(1/k)]. (C) 2018 Elsevier B.V. All rights reserved.
引用
收藏
页码:276 / 288
页数:13
相关论文
共 50 条
  • [1] A NOTE ON CYCLES IN LOCALLY HAMILTONIAN AND LOCALLY HAMILTON-CONNECTED GRAPHS
    Tang, Long
    Vumar, Elkin
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2020, 40 (01) : 77 - 84
  • [2] Hamilton cycles in a family of graphs which includes the generalized Petersen graphs
    Dean, Matthew
    ARS COMBINATORIA, 2012, 103 : 205 - 224
  • [3] Global cycle properties in locally connected, locally traceable and locally hamiltonian graphs
    van Aardt, Susan A.
    Frick, Marietjie
    Oellermann, Ortrud R.
    de Wet, Johan
    DISCRETE APPLIED MATHEMATICS, 2016, 205 : 171 - 179
  • [4] Forbidden Subgraphs and Weak Locally Connected Graphs
    Liu, Xia
    Lin, Houyuan
    Xiong, Liming
    GRAPHS AND COMBINATORICS, 2018, 34 (06) : 1671 - 1690
  • [5] Forbidden Subgraphs and Weak Locally Connected Graphs
    Xia Liu
    Houyuan Lin
    Liming Xiong
    Graphs and Combinatorics, 2018, 34 : 1671 - 1690
  • [6] Locally connected spanning trees in cographs, complements of bipartite graphs and doubly chordal graphs
    Panda, B. S.
    Pradhan, D.
    INFORMATION PROCESSING LETTERS, 2010, 110 (23) : 1067 - 1073
  • [7] Hamiltonian properties of almost locally connected claw-free graphs
    Chen, Xiaodong
    Li, MingChu
    Liao, Wei
    Broersma, Hajo
    ARS COMBINATORIA, 2016, 124 : 95 - 109
  • [8] Hardness Results of Connected Power Domination for Bipartite Graphs and Chordal Graphs
    Goyal, Pooja
    Panda, B. S.
    INTERNATIONAL JOURNAL OF FOUNDATIONS OF COMPUTER SCIENCE, 2024, 35 (06) : 669 - 703
  • [9] On locally connected connectifications
    Fedeli, A
    Le Donne, A
    TOPOLOGY AND ITS APPLICATIONS, 1999, 96 (01) : 85 - 88
  • [10] CONNECTED COALITIONS IN GRAPHS
    Alikhani, Saeid
    Bakhshesh, Davood
    Golmohammadi, Hamidreza
    Konstantinova, Elena v
    DISCUSSIONES MATHEMATICAE GRAPH THEORY, 2024, 44 (04) : 1551 - 1566