Incorporating the Nanoscale Encapsulation Concept from Liquid Electrolytes into Solid-State Lithium-Sulfur Batteries

被引:53
作者
Gao, Xin [1 ]
Zheng, Xueli [1 ]
Wang, Jingyang [1 ]
Zhang, Zewen [1 ]
Xiao, Xin [1 ]
Wan, Jiayu [1 ]
Ye, Yusheng [1 ]
Chou, Lien-Yang [1 ]
Lee, Hiang Kwee [1 ]
Wang, Jiangyan [1 ,3 ]
Vila, Rafael A. [1 ]
Yang, Yufei [1 ]
Zhang, Pu [1 ]
Wang, Lin-Wang [3 ]
Cui, Yi [1 ,2 ]
机构
[1] Stanford Univ, Dept Mat Sci & Engn, Stanford, CA 94305 USA
[2] Stanford Inst Mat & Energy Sci, SLAC Natl Accelerator Lab, Menlo Pk, CA 94025 USA
[3] Lawrence Berkeley Natl Lab, Mat Sci Div, Berkeley, CA 94720 USA
基金
美国国家科学基金会;
关键词
Li-S batteries; solid-state electrolytes; nanoscale encapsulation; polysulfide entrapment; in situ optical cell; HIGH-CAPACITY; POLYMER ELECTROLYTE; CATHODE; SURFACE; LI2S; LIFE; NANOCOMPOSITE; CONDUCTIVITY; CELLS;
D O I
10.1021/acs.nanolett.0c02033
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Solid-state Li-S batteries are attractive due to their high energy density and safety. However, it is unclear whether the concepts from liquid electrolytes are applicable in the solid state to improve battery performance. Here, we demonstrate that the nanoscale encapsulation concept based on Li2S@TiS2 core-shell particles, originally developed in liquid electrolytes, is effective in solid polymer electrolytes. Using in situ optical cell and sulfur Kedge X-ray absorption, we find that polysulfides form and are welltrapped inside individual particles by the nanoscale TiS2 encapsulation. This TiS2 encapsulation layer also functions to catalyze the oxidation reaction of Li2S to sulfur, even in solid-state electrolytes, proven by both experiments and density functional theory calculations. A high cell-level specific energy of 427 W.h.kg(-1) is achieved by integrating the Li2S@TiS2 cathode with a poly(ethylene oxide)-based electrolyte and a lithium metal anode. This study points to the fruitful direction of borrowing concepts from liquid electrolytes into solid-state batteries.
引用
收藏
页码:5496 / 5503
页数:8
相关论文
共 53 条
[1]   Building better batteries [J].
Armand, M. ;
Tarascon, J. -M. .
NATURE, 2008, 451 (7179) :652-657
[2]  
Bai SY, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.94, 10.1038/nenergy.2016.94]
[3]  
Bruce PG, 2012, NAT MATER, V11, P19, DOI [10.1038/nmat3191, 10.1038/NMAT3191]
[4]   Batteries and fuel cells for emerging electric vehicle markets [J].
Cano, Zachary P. ;
Banham, Dustin ;
Ye, Siyu ;
Hintennach, Andreas ;
Lu, Jun ;
Fowler, Michael ;
Chen, Zhongwei .
NATURE ENERGY, 2018, 3 (04) :279-289
[5]   Titanium disulfide nanotubes as hydrogen-storage materials [J].
Chen, J ;
Li, SL ;
Tao, ZL ;
Shen, YT ;
Cui, CX .
JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2003, 125 (18) :5284-5285
[6]   Nanocomposite polymer electrolytes for lithium batteries [J].
Croce, F ;
Appetecchi, GB ;
Persi, L ;
Scrosati, B .
NATURE, 1998, 394 (6692) :456-458
[7]   A Fireproof, Lightweight, Polymer-Polymer Solid-State Electrolyte for Safe Lithium Batteries [J].
Cui, Yi ;
Wan, Jiayu ;
Ye, Yusheng ;
Liu, Kai ;
Chou, Lien-Yang .
NANO LETTERS, 2020, 20 (03) :1686-1692
[8]   Lithium Azide as an Electrolyte Additive for All-Solid-State Lithium-Sulfur Batteries [J].
Eshetu, Gebrekidan Gebresilassie ;
Judez, Xabier ;
Li, Chunmei ;
Bondarchuk, Oleksandr ;
Rodriguez-Martinez, Lide M. ;
Zhang, Heng ;
Armand, Michel .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2017, 56 (48) :15368-15372
[9]   New Approaches for High Energy Density Lithium-Sulfur Battery Cathodes [J].
Evers, Scott ;
Nazar, Linda F. .
ACCOUNTS OF CHEMICAL RESEARCH, 2013, 46 (05) :1135-1143
[10]   Three-dimensional bilayer garnet solid electrolyte based high energy density lithium metal-sulfur batteries [J].
Fu, Kun ;
Gong, Yunhui ;
Hitz, Gregory T. ;
McOwen, Dennis W. ;
Li, Yiju ;
Xu, Shaomao ;
Wen, Yang ;
Zhang, Lei ;
Wang, Chengwei ;
Pastel, Glenn ;
Dai, Jiaqi ;
Liu, Boyang ;
Xie, Hua ;
Yao, Yonggang ;
Wachsman, Eric D. ;
Hu, Liangbing .
ENERGY & ENVIRONMENTAL SCIENCE, 2017, 10 (07) :1568-1575