On some properties of conjugate trigonometric Fourier series

被引:1
作者
Zviadadze, Shalva [1 ]
机构
[1] I Javakhishvili Tbilisi State Univ, Fac Exact & Nat Sci, GE-0143 Tbilisi, Georgia
关键词
Lebesgue integral; conjugate trigonometric Fourier series; generalized Cesaro means; linear means; Abel-Poisson means; GENERALIZED CESARO MEANS; TERMS; JUMPS; CONVERGENCE;
D O I
10.1515/gmj-2013-0017
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
A theorem of Ferenc Lukacs states that the partial sums of conjugate Fourier series of a periodic Lebesgue integrable function f diverge at the logarithmic rate at the points of first kind discontinuity of f. The aim of this paper is to prove analogous theorems in terms of generalized Cesar means, introduced by Akhobadze, as well as regular linear means. We also formulate analogous theorems in terms of Abel Poisson means for functions and series introduced by Taberslci.
引用
收藏
页码:397 / 413
页数:17
相关论文
共 17 条
[3]  
Akhobadze T., 2004, B GEORGIAN ACAD SCI, V170, P23
[4]  
Lukacs F, 1920, J REINE ANGEW MATH, V150, P107
[5]  
Móricz F, 2003, ACTA MATH HUNG, V98, P259
[6]   Ferenc Lukacs type theorems in terms of the Abel-Poisson mean of conjugate series [J].
Móricz, F .
PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (04) :1243-1250
[7]  
Pinsky M.A., 2004, Methods Appl. Anal, V11, P317
[8]  
Riad R., 1987, ANN U SCI BUDAP, V30, P69
[9]   Determination of jumps in terms of spectral data [J].
Shi, QL ;
Shi, XL .
ACTA MATHEMATICA HUNGARICA, 2006, 110 (03) :193-206
[10]  
TABERSKI R, 1974, COMMENT MATH PRACE M, V17, P499