Formaldehyde LIF detection with background subtraction around single igniting GTL diesel droplets

被引:8
作者
Burkert, Alfons [1 ]
Paa, Wolfgang [1 ]
Reimert, Manfredo [2 ]
Klinkov, Konstantin [2 ]
Eigenbrod, Christian [2 ]
机构
[1] Inst Photon Technol IPHT, Jena, Germany
[2] Ctr Appl Space Technol ZARM, Bremen, Germany
关键词
GTL fuel; Droplet ignition; Cool flame; Formaldehyde; Laser induced fluorescence; ABSORPTION CROSS-SECTIONS; QUANTUM YIELDS; SPECTROSCOPY; HCHO; AIR; NM;
D O I
10.1016/j.fuel.2013.03.041
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
Formaldehyde is an important combustion intermediate, which is often used for the analysis of turbulent flames, internal combustion engines or droplet/spray ignition processes. Due to its high concentration in hydrocarbon fuel combustion, laser induced fluorescence (LIF) of formaldehyde can easily be excited (e. g. 339, 343, 353 and 355 nm) and measured (360-550 nm). However, it is often superimposed by background emission from other combustion intermediates as, e.g. polycyclic aromatic hydrocarbons (PAHs). We present formaldehyde LIF excitation spectra obtained with a XeF excimer laser in combination with a spectrometer and an ICCD camera in dependence of pressure (50 mbar to 20 bar). For formaldehyde LIF and background excitation, we selected the wavelengths 353.373 and 353.386 nm, respectively. LIF measurements at the background wavelength contain a rising formaldehyde contribution with increasing pressure. We present a novel method for the calculation of the real background. This method is applied to the ignition of single gas-to-liquid (GTL) diesel droplets. However, the method can also be applied to other fuels. In the case of a GTL diesel ignition experiment (628 K, 3 bar) the real background amounted to only 30% of the emission which was measured at the background excitation wavelength (353.386 nm). (C) 2013 Elsevier Ltd. All rights reserved.
引用
收藏
页码:384 / 392
页数:9
相关论文
共 34 条
[1]   Investigation of soot formation in Diesel-GTL fuel blends under quiescent conditions [J].
Azimov, U. B. ;
Roziboyev, E. A. ;
Kim, K. S. ;
Jeong, D. S. ;
Lee, Y. G. ;
Yun, J. E. .
INTERNATIONAL JOURNAL OF AUTOMOTIVE TECHNOLOGY, 2008, 9 (05) :523-534
[2]   Absorption of formaldehyde (H2CO) in the (A)over-tilde1A2←(X)over-tilde1A1 band system at elevated temperatures and pressures [J].
Bai, X ;
Metz, T ;
Ossler, F ;
Aldén, M .
SPECTROCHIMICA ACTA PART A-MOLECULAR AND BIOMOLECULAR SPECTROSCOPY, 2004, 60 (04) :821-828
[3]  
Bauerle B., 1994, 25 S INT COMBUSTION, P135, DOI [10.1016/S0082-0784(06)80637-5, DOI 10.1016/S0082-0784(06)80637-5]
[4]   Pulsed discharge nozzle cavity ringdown spectroscopy of cold polycyclic aromatic hydrocarbon ions [J].
Biennier, L ;
Salama, F ;
Allamandola, LJ ;
Scherer, JJ .
JOURNAL OF CHEMICAL PHYSICS, 2003, 118 (17) :7863-7872
[5]   Pulse stretcher with variable pulse length for excimer laser applications [J].
Burkert, A. ;
Bergmann, J. ;
Triebel, W. ;
Natura, U. .
REVIEW OF SCIENTIFIC INSTRUMENTS, 2010, 81 (03)
[6]   Single-shot imaging of formaldehyde in hydrocarbon flames by XeF excimer laser-induced fluorescence [J].
Burkert, A ;
Grebner, D ;
Müller, D ;
Triebel, W ;
König, J .
PROCEEDINGS OF THE COMBUSTION INSTITUTE, 2000, 28 (02) :1655-1661
[7]   TEMPERATURE-DEPENDENT FORMALDEHYDE CROSS-SECTIONS IN THE NEAR-ULTRAVIOLET SPECTRAL REGION [J].
CANTRELL, CA ;
DAVIDSON, JA ;
MCDANIEL, AH ;
SHETTER, RE ;
CALVERT, JG .
JOURNAL OF PHYSICAL CHEMISTRY, 1990, 94 (10) :3902-3908
[8]   Ultraviolet Photolysis of HCHO: Absolute HCO Quantum Yields by Direct Detection of the HCO Radical Photoproduct [J].
Carbajo, Paula Gorrotxategi ;
Smith, Shona C. ;
Holloway, Anne-Louise ;
Smith, Carina A. ;
Pope, Francis D. ;
Shallcross, Dudley E. ;
Orr-Ewing, Andrew J. .
JOURNAL OF PHYSICAL CHEMISTRY A, 2008, 112 (48) :12437-12448
[9]  
Chevron Corporation, 2007, DIES FUELS TECHN REV
[10]   THE SPECTROSCOPY OF FORMALDEHYDE AND THIOFORMALDEHYDE [J].
CLOUTHIER, DJ ;
RAMSAY, DA .
ANNUAL REVIEW OF PHYSICAL CHEMISTRY, 1983, 34 :31-58