Directly Grown Vertical Graphene Carpets as Janus Separators toward Stabilized Zn Metal Anodes

被引:493
作者
Li, Chao [1 ]
Sun, Zhongti [1 ]
Yang, Tian [2 ]
Yu, Lianghao [1 ]
Wei, Nan [1 ,3 ]
Tian, Zhengnan [1 ]
Cai, Jingsheng [1 ]
Lv, Jiaze [1 ]
Shao, Yuanlong [1 ,3 ]
Rummeli, Mark H. [1 ]
Sun, Jingyu [1 ,3 ]
Liu, Zhongfan [1 ,3 ,4 ]
机构
[1] Soochow Univ, Coll Energy, Soochow Inst Energy & Mat Innovat SIEMIS, Key Lab Adv Carbon Mat & Wearable Energy Technol, Suzhou 215006, Peoples R China
[2] Tsinghua Univ, Sch Mat Sci & Engn, State Key Lab New Ceram & Fine Proc, Beijing 100084, Peoples R China
[3] Beijing Graphene Inst BGI, Beijing 100095, Peoples R China
[4] Peking Univ, Coll Chem & Mol Engn, Ctr Nanochem CNC, Beijing 100871, Peoples R China
基金
中国国家自然科学基金;
关键词
in situ grown vertical graphene carpet; Janus separator; vertical graphene; Zn metal anodes; CHEMICAL-VAPOR-DEPOSITION; ZINC; GLASSES;
D O I
10.1002/adma.202003425
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Zinc metal anode has garnered a great deal of scientific and technological interest. Nevertheless, major bottlenecks restricting its large-scale utilization lie in the poor electrochemical stability and unsatisfactory cycling life. Herein, a Janus separator is developed via directly growing vertical graphene (VG) carpet on one side of commercial glass fiber separator throughout chemical vapor deposition. A simple air plasma treatment further renders the successful incorporation of oxygen and nitrogen heteroatoms on bare graphene. Thus-derived 3D VG scaffold affording large surface area and porous structure can be viewed as a continuation of planar zinc anode. In turn, the Janus separator harvests homogenous electric field distribution and lowered local current density at the interface of the anode/electrolyte, as well as harnesses favorable zincophilic feature for building-up uniform Zn ionic flux. Such a separator engineering enables an impressive rate and cycle performance (93% over 5000 cycles at 5 A g(-1)) for Zn-ion hybrid capacitors and outstanding energy density (182 Wh kg(-1)) for V2O5//Zn batteries, respectively. This strategy with large scalability and cost-effectiveness represents a universal route to protect prevailing metal anodes (Zn, Na, K) in rechargeable batteries.
引用
收藏
页数:9
相关论文
共 38 条
[1]   Persistent zinc-ion storage in mass-produced V2O5 architecture [J].
Chen, Dong ;
Rui, Xianhong ;
Zhang, Qi ;
Geng, Hongbo ;
Gan, Liyong ;
Zhang, Wei ;
Li, Chengchao ;
Huang, Shaoming ;
Yu, Yan .
NANO ENERGY, 2019, 60 :171-178
[2]   Growing Uniform Graphene Disks and Films on Molten Glass for Heating Devices and Cell Culture [J].
Chen, Yubin ;
Sun, Jingyu ;
Gao, Junfeng ;
Du, Feng ;
Han, Qi ;
Nie, Yufeng ;
Chen, Zhaolong ;
Bachmatiuk, Alicja ;
Priydarshi, Manish Kr. ;
Ma, Donglin ;
Song, Xiuju ;
Wu, Xiaosong ;
Xiong, Chunyang ;
Ruemmeli, Mark H. ;
Ding, Feng ;
Zhang, Yanfeng ;
Liu, Zhongfan .
ADVANCED MATERIALS, 2015, 27 (47) :7839-7846
[3]   Recent Progress of Rechargeable Batteries Using Mild Aqueous Electrolytes [J].
Huang, Jianhang ;
Guo, Zhaowei ;
Ma, Yuanyuan ;
Bin, Duan ;
Wang, Yonggang ;
Xia, Yongyao .
SMALL METHODS, 2019, 3 (01)
[4]  
Kundu D, 2016, NAT ENERGY, V1, DOI [10.1038/NENERGY.2016.119, 10.1038/nenergy.2016.119]
[5]   Characterization and performance evaluation of lithium-ion battery separators [J].
Lagadec, Marie Francine ;
Zahn, Raphael ;
Wood, Vanessa .
NATURE ENERGY, 2019, 4 (01) :16-25
[6]   Two-dimensional molecular brush-functionalized porous bilayer composite separators toward ultrastable high-current density lithium metal anodes [J].
Li, Chuanfa ;
Liu, Shaohong ;
Shi, Chenguang ;
Liang, Ganghao ;
Lu, Zhitao ;
Fu, Ruowen ;
Wu, Dingcai .
NATURE COMMUNICATIONS, 2019, 10 (1)
[7]   A Novel Dendrite-Free Mn2+/Zn2+ Hybrid Battery with 2.3 V Voltage Window and 11000-Cycle Lifespan [J].
Li, Ming ;
He, Qiu ;
Li, Zilan ;
Li, Qi ;
Zhang, Yuxin ;
Meng, Jiashen ;
Liu, Xiong ;
Li, Shidong ;
Wu, Buke ;
Chen, Lineng ;
Liu, Ziong ;
Luo, Wen ;
Han, Chunhua ;
Mai, Liqiang .
ADVANCED ENERGY MATERIALS, 2019, 9 (29)
[8]   Aqueous Zinc-Ion Storage in MoS2 by Tuning the Intercalation Energy [J].
Liang, Hanfeng ;
Cao, Zhen ;
Ming, Fangwang ;
Zhang, Wenli ;
Anjum, Dalaver H. ;
Cui, Yi ;
Cavallo, Luigi ;
Alshareef, Husam N. .
NANO LETTERS, 2019, 19 (05) :3199-3206
[9]   Highly Reversible Zn Anode Enabled by Controllable Formation of Nucleation Sites for Zn-Based Batteries [J].
Liang, Pengcheng ;
Yi, Jin ;
Liu, Xiaoyu ;
Wu, Kai ;
Wang, Zhuo ;
Cui, Jin ;
Liu, Yuyu ;
Wang, Yonggang ;
Xia, Yongyao ;
Zhang, Jiujun .
ADVANCED FUNCTIONAL MATERIALS, 2020, 30 (13)
[10]   Composite lithium electrode with mesoscale skeleton via simple mechanical deformation [J].
Liang, Zheng ;
Yan, Kai ;
Zhou, Guangmin ;
Pei, Allen ;
Zhao, Jie ;
Sun, Yongming ;
Xie, Jin ;
Li, Yanbin ;
Shi, Feifei ;
Liu, Yayuan ;
Lin, Dingchang ;
Liu, Kai ;
Wang, Hansen ;
Wang, Hongxia ;
Lu, Yingying ;
Cui, Yi .
SCIENCE ADVANCES, 2019, 5 (03)