Defect and adjoint error correction

被引:0
作者
Giles, MB [1 ]
机构
[1] Univ Oxford, Comp Lab, Oxford OX1 3QD, England
来源
COMPUTATIONAL FLUID DYNAMICS 2000 | 2001年
关键词
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Motivated by applications in aero-acoustics and electromagnetics, this paper discusses the combined use of defect correction to improve the order of accuracy of numerical solutions, and adjoint error correction to improve the order of accuracy of derived output functionals such as far-field boundary integrals. Numerical results for the 1D Helmholtz equation on an irregular grid show fourth order accuracy for the numerical solution, and sixth order accuracy for the boundary value.
引用
收藏
页码:28 / 36
页数:9
相关论文
共 8 条
[1]   OPTIMAL RECOVERY IN THE FINITE-ELEMENT METHOD .2. DEFECT CORRECTION FOR ORDINARY DIFFERENTIAL-EQUATIONS [J].
BARRETT, JW ;
MOORE, G ;
MORTON, KW .
IMA JOURNAL OF NUMERICAL ANALYSIS, 1988, 8 (04) :527-540
[2]  
Giles M. B., 1999, 993293 AIAA
[3]  
GILES MB, 1997, 971850 AIAA
[4]  
KOREN B, 1988, J COMPUT PHYS, V76
[5]   The adaptive computation of far-field patterns by a posteriori error estimation of linear functionals [J].
Monk, P ;
Suli, E .
SIAM JOURNAL ON NUMERICAL ANALYSIS, 1998, 36 (01) :251-274
[6]   Adjoint recovery of superconvergent functionals from PDE approximations [J].
Pierce, NA ;
Giles, MB .
SIAM REVIEW, 2000, 42 (02) :247-264
[7]  
SKEEL RD, 1981, SIAM J NUMER ANAL, V19, P171
[8]   DEFECT CORRECTION PRINCIPLE AND DISCRETIZATION METHODS [J].
STETTER, HJ .
NUMERISCHE MATHEMATIK, 1978, 29 (04) :425-443