Convergence Theorems for Modified Inertial Viscosity Splitting Methods in Banach Spaces

被引:6
|
作者
Pan, Chanjuan [1 ]
Wang, Yuanheng [1 ]
机构
[1] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
基金
中国国家自然科学基金;
关键词
Banach spaces; viscosity splitting method; inertial method; accretive operators; ACCRETIVE-OPERATORS; PROXIMAL METHOD; MONOTONE; ALGORITHMS;
D O I
10.3390/math7020156
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this article, we study a modified viscosity splitting method combined with inertial extrapolation for accretive operators in Banach spaces and then establish a strong convergence theorem for such iterations under some suitable assumptions on the sequences of parameters. As an application, we extend our main results to solve the convex minimization problem. Moreover, the numerical experiments are presented to support the feasibility and efficiency of the proposed method.
引用
收藏
页数:12
相关论文
共 50 条
  • [41] Convergence analysis of modified inertial forward-backward splitting scheme with applications
    Enyi, Cyril D.
    Shehu, Yekini
    Iyiola, Olaniyi S.
    Yao, Jen-Chih
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2022, 45 (07) : 3933 - 3948
  • [42] Strong convergence of the modified Ishikawa iterative method for infinitely many nonexpansive mappings in Banach spaces
    Katchang, Phayap
    Kumam, Poom
    COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2010, 59 (04) : 1473 - 1483
  • [43] Novel inertial methods for fixed point problems in reflexive Banach spaces with applications
    Sunthrayuth, Pongsakorn
    Kankam, Kunrada
    Promkam, Ratthaprom
    Srisawat, Somnuk
    RENDICONTI DEL CIRCOLO MATEMATICO DI PALERMO, 2024, 73 (03) : 1177 - 1215
  • [44] Strong convergence of a generalized forward-backward splitting method in reflexive Banach spaces
    Minh Tuyen, Truong
    Promkam, Ratthaprom
    Sunthrayuth, Pongsakorn
    OPTIMIZATION, 2022, 71 (06) : 1483 - 1508
  • [45] The general iterative methods for nonexpansive mappings in Banach spaces
    Wangkeeree, Rattanaporn
    Petrot, Narin
    Wangkeeree, Rabian
    JOURNAL OF GLOBAL OPTIMIZATION, 2011, 51 (01) : 27 - 46
  • [46] Modified Extragradient Methods for a System of Variational Inequalities in Banach Spaces
    Yao, Yonghong
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Liou, Yeong-Cheng
    Yaqoob, Huma
    ACTA APPLICANDAE MATHEMATICAE, 2010, 110 (03) : 1211 - 1224
  • [47] Strong Convergence of Viscosity Iteration Methods for Nonexpansive Mappings
    Jung, Jong Soo
    ABSTRACT AND APPLIED ANALYSIS, 2009,
  • [48] Convergence theorems for solving a system of pseudomonotone variational inequalities using Bregman distance in Banach spaces
    Jolaoso, Lateef Olakunle
    Aphane, Maggie
    Raji, Musiliu Tayo
    Osinuga, Idowu Ademola
    Olajuwon, Bakai Ishola
    BOLLETTINO DELLA UNIONE MATEMATICA ITALIANA, 2022, 15 (04): : 561 - 588
  • [49] Strong convergence theorems of quasi-φ-asymptotically nonexpansive semi-groups in Banach spaces
    Chang, Shih-sen
    Wang, Lin
    Tang, Yong-Kun
    Zao, Yun-He
    Wang, Bin
    FIXED POINT THEORY AND APPLICATIONS, 2012,
  • [50] STRONG CONVERGENCE OF AN INERTIAL FORWARD-BACKWARD SPLITTING METHOD FOR ACCRETIVE OPERATORS IN REAL BANACH SPACE
    Abass, H. A.
    Izuchukwu, C.
    Mewomo, O. T.
    Dong, Q. L.
    FIXED POINT THEORY, 2020, 21 (02): : 397 - 412