Theoretical optimization of multi-layer InAs/GaAs quantum dots subject to post-growth thermal annealing for tailoring the photoluminescence emission beyond 1.3 μm

被引:5
作者
Ghosh, K. [1 ]
Naresh, Y. [2 ]
Reddy, N. Srichakradhar [1 ]
机构
[1] VIT Univ, Sch Elect Engn SENSE, Vellore 632014, Tamil Nadu, India
[2] Anna Univ Technol, Nanotechnol Dept, Coimbatore 641047, Tamil Nadu, India
关键词
STRAIN; NANOSTRUCTURES; THICKNESS; LAYER; SHAPE;
D O I
10.1063/1.4739457
中图分类号
O59 [应用物理学];
学科分类号
摘要
In this paper, we present theoretical analysis and computation for tuning the ground state (GS) photoluminescence (PL) emission of InAs/GaAs quantum dots (QDs) at telecommunication window of 1.3-1.55 mu m by optimizing its height and base dimensions through quantum mechanical concepts. For this purpose, numerical modelling is carried out to calculate the quantized energy states of finite dimensional QDs so as to obtain the GS PL emission at or beyond 1.3 mu m. Here, we also explored strain field altering the QD size distribution in multilayer heterostructure along with the changes in the PL spectra, simulation on post growth thermal annealing process which blueshifts the operating wavelength away from the vicinity of 1.3 mu m and improvement of optical properties by varying the thickness of GaAs spacing. The results are discussed in detail which will serve as an important information tool for device scientist fabricating high quality semiconductor quantum structures with reduced defects at telecommunication wavelengths. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4739457]
引用
收藏
页数:7
相关论文
共 38 条
[1]   An approach to suppress the blue-shift of photoluminescence peaks in coupled multilayer InAs/GaAs quantum dots by high temperature post-growth annealing [J].
Adhikary, S. ;
Ghosh, K. ;
Chowdhury, S. ;
Halder, N. ;
Chakrabarti, S. .
MATERIALS RESEARCH BULLETIN, 2010, 45 (10) :1466-1469
[2]   Modeling of semiconductor nanostructures with nextnano3 [J].
Birner, S. ;
Hackenbuchner, S. ;
Sabathil, M. ;
Zandler, G. ;
Majewski, J. A. ;
Andlauer, T. ;
Zibold, T. ;
Morschl, R. ;
Trellakis, A. ;
Vogl, P. .
ACTA PHYSICA POLONICA A, 2006, 110 (02) :111-124
[3]   Tuning vertically stacked InAs/GaAs quantum dot properties under spacer thickness effects for 1.3 μm emission [J].
Bouzaïene, L ;
Ilahi, B ;
Sfaxi, L ;
Hassen, F ;
Maaref, H ;
Marty, O ;
Dazord, J .
APPLIED PHYSICS A-MATERIALS SCIENCE & PROCESSING, 2004, 79 (03) :587-591
[4]   Determination of the shape and indium distribution of low-growth-rate InAs quantum dots by cross-sectional scanning tunneling microscopy [J].
Bruls, DM ;
Vugs, JWAM ;
Koenraad, PM ;
Salemink, HWM ;
Wolter, JH ;
Hopkinson, M ;
Skolnick, MS ;
Long, F ;
Gill, SPA .
APPLIED PHYSICS LETTERS, 2002, 81 (09) :1708-1710
[5]   Effects of the quantum dot ripening in high-coverage InAs/GaAs nanostructures [J].
Frigeri, P. ;
Nasi, L. ;
Prezioso, M. ;
Seravalli, L. ;
Trevisi, G. ;
Gombia, E. ;
Mosca, R. ;
Germini, F. ;
Bocchi, C. ;
Franchi, S. .
JOURNAL OF APPLIED PHYSICS, 2007, 102 (08)
[6]   Annealing of In0.45Ga0.55As/GaAs quantum dots overgrown with large monolayer (11 ML) coverage for applications in thermally stable optoelectronic devices [J].
Ghosh, K. ;
Kundu, S. ;
Halder, N. ;
Srujan, M. ;
Sengupta, S. ;
Chakrabarti, S. .
SOLID STATE COMMUNICATIONS, 2011, 151 (19) :1394-1399
[7]   Electronics states of interdiffused quantum dots [J].
Gunawan, O ;
Djie, HS ;
Ooi, BS .
PHYSICAL REVIEW B, 2005, 71 (20)
[8]   Photoluminescence and magnetophotoluminescence of vertically stacked InAs/GaAs quantum dot structures [J].
Hospodkova, A. ;
Krapek, V. ;
Kuldova, K. ;
Humlicek, J. ;
Hulicius, E. ;
Oswald, J. ;
Pangrac, J. ;
Zeman, J. .
PHYSICA E-LOW-DIMENSIONAL SYSTEMS & NANOSTRUCTURES, 2007, 36 (01) :106-113
[9]   Optimizing the spacer layer thickness of vertically stacked InAs/GaAs quantum dots [J].
Ilahi, B ;
Sfaxi, L ;
Hassen, F ;
Salem, B ;
Bremond, G ;
Marty, O ;
Bouzaiene, L ;
Maaref, H .
MATERIALS SCIENCE & ENGINEERING C-BIOMIMETIC AND SUPRAMOLECULAR SYSTEMS, 2006, 26 (2-3) :374-377
[10]  
Joyce PB, 2002, PHYS REV B, V66, DOI 10.1103/PhysRevB.66.075316