Toward Asymptotic Diffusion Limit Preserving High-Order, Low-Order Method

被引:4
|
作者
Park, H. [1 ]
机构
[1] Los Alamos Natl Lab, Los Alamos, NM 87545 USA
关键词
High-order; low-order method; asymptotic analysis; corner balance; radiation hydrodynamics; EDDINGTON FACTOR METHOD; DISCONTINUOUS GALERKIN; ACCELERATION METHOD; TIME; TRANSPORT; SCHEME; DISCRETIZATION; EQUATIONS;
D O I
10.1080/00295639.2020.1769390
中图分类号
TL [原子能技术]; O571 [原子核物理学];
学科分类号
0827 ; 082701 ;
摘要
Recent development of the high-order, low-order (HOLO) method has shown promising results for solving thermal radiative transfer problems. The HOLO algorithm is a moment-based acceleration, similar to the well-known nonlinear diffusion acceleration and coarse-mesh finite difference methods. In this work, we introduce a new spatial-differencing scheme for the low-order (LO) system based on the corner-balance method and analyze an asymptotic diffusion property for a one-dimensional gray equation. An asymptotic analysis indicates that the new spatial-differencing scheme possesses the equilibrium diffusion limit. Numerical examples demonstrate significant improvements in the solution accuracy compared to the LO finite-volume discretization with a discontinuous source reconstruction.
引用
收藏
页码:952 / 970
页数:19
相关论文
共 50 条
  • [1] Automated low-order to high-order mesh conversion
    Jeremy Ims
    Z. J. Wang
    Engineering with Computers, 2019, 35 : 323 - 335
  • [2] High-Order/Low-Order Methods for Ocean Modeling
    Newman, Christopher
    Womeldorff, Geoff
    Chacon, Luis
    Knoll, Dana A.
    INTERNATIONAL CONFERENCE ON COMPUTATIONAL SCIENCE, ICCS 2015 COMPUTATIONAL SCIENCE AT THE GATES OF NATURE, 2015, 51 : 2086 - 2096
  • [3] Automated low-order to high-order mesh conversion
    Ims, Jeremy
    Wang, Z. J.
    ENGINEERING WITH COMPUTERS, 2019, 35 (01) : 323 - 335
  • [4] A Stable 1D Multigroup High-Order Low-Order Method
    Yee, B. C.
    Wollaber, A. B.
    Haut, T. S.
    Park, H.
    JOURNAL OF COMPUTATIONAL AND THEORETICAL TRANSPORT, 2017, 46 (01) : 46 - 76
  • [5] Multiscale high-order/low-order (HOLO) algorithms and applications
    Chacon, L.
    Chen, G.
    Knoll, D. A.
    Newman, C.
    Park, H.
    Taitano, W.
    Willert, J. A.
    Womeldorff, G.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2017, 330 : 21 - 45
  • [6] APPROXIMATION OF HIGH-ORDER SYSTEMS BY LOW-ORDER MODELS WITH DELAYS
    GRUCA, A
    BERTRAND, P
    INTERNATIONAL JOURNAL OF CONTROL, 1978, 28 (06) : 953 - 965
  • [7] LOW-ORDER APPROACHES TO HIGH-ORDER SYSTEMS - PROBLEMS AND PROMISES
    MITCHELL, DG
    HOH, RH
    JOURNAL OF GUIDANCE CONTROL AND DYNAMICS, 1982, 5 (05) : 482 - 489
  • [8] APPROXIMATION OF HIGH-ORDER SYSTEMS BY LOW-ORDER MODELS WITH DELAYS
    MARSHALL, SA
    INTERNATIONAL JOURNAL OF CONTROL, 1979, 30 (04) : 721 - 723
  • [9] LOW-ORDER PRECONDITIONING OF HIGH-ORDER TRIANGULAR FINITE ELEMENTS
    Chalmers, Noel
    Warburton, T.
    SIAM JOURNAL ON SCIENTIFIC COMPUTING, 2018, 40 (06): : A4040 - A4059
  • [10] OPTIMUM APPROXIMATION OF HIGH-ORDER SYSTEMS BY LOW-ORDER MODELS
    SINHA, NK
    BEREZNAI, GT
    INTERNATIONAL JOURNAL OF CONTROL, 1971, 14 (05) : 951 - &