Metal-to-Multilayer-Graphene Contact-Part I: Contact Resistance Modeling

被引:57
作者
Khatami, Yasin [1 ]
Li, Hong [1 ]
Xu, Chuan [1 ]
Banerjee, Kaustav [1 ]
机构
[1] Univ Calif Santa Barbara, Dept Elect & Comp Engn, Santa Barbara, CA 93106 USA
基金
美国国家科学基金会;
关键词
Contact resistance; edge contact; multilayer graphene (MLG); top contact; 1-D contact model; BAND-GAP; NANOTUBES; TRANSPORT; DEVICES; CONDUCTIVITY; PERFORMANCE; MODULATION; IMPACT; LIMITS;
D O I
10.1109/TED.2012.2205256
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Parasitic components are becoming increasingly important with geometric scaling in nanoscale electronic devices and interconnects. The parasitic contact resistance between metal electrodes and multilayer graphene (MLG) is a key factor determining the performance ofMLG-based structures in various applications. The available methods for characterizing metal-MLG contact interfaces rely on a model based on the top-contact structure, but it ignores the edge contacts that can greatly reduce the contact resistance. Therefore, in the present work, a rigorous theoretical 1-D model for metal-MLG contact is developed for the first time. The contribution of the major components of resistance-the top and edge contacts (side and end contacts) and the MLG sheet resistivity-to the total resistance of the structure is included in the model. The 1-D model is compared to a 3-D model of the system, and a method for investigation and optimization of the range of validity of the 1-D model is developed. The results of this work provide valuable insight to both the characterization and design of metal-MLG contacts.
引用
收藏
页码:2444 / 2452
页数:9
相关论文
共 83 条
[1]   Coupling of carbon nanotubes to metallic contacts [J].
Anantram, MP ;
Datta, S ;
Xue, YQ .
PHYSICAL REVIEW B, 2000, 61 (20) :14219-14224
[2]  
Awano Y., 2009, Electron Devices Meeting (IEDM), 2009 IEEE International, P1
[3]  
Bae S, 2010, NAT NANOTECHNOL, V5, P574, DOI [10.1038/nnano.2010.132, 10.1038/NNANO.2010.132]
[4]   Superior thermal conductivity of single-layer graphene [J].
Balandin, Alexander A. ;
Ghosh, Suchismita ;
Bao, Wenzhong ;
Calizo, Irene ;
Teweldebrhan, Desalegne ;
Miao, Feng ;
Lau, Chun Ning .
NANO LETTERS, 2008, 8 (03) :902-907
[5]  
Bao W, 2011, NAT PHYS, V7, P948, DOI [10.1038/nphys2103, 10.1038/NPHYS2103]
[6]   Effects of Metallic Contacts on Electron Transport through Graphene [J].
Barraza-Lopez, Salvador ;
Vanevic, Mihajlo ;
Kindermann, Markus ;
Chou, M. Y. .
PHYSICAL REVIEW LETTERS, 2010, 104 (07)
[7]   Substrate Gating of Contact Resistance in Graphene Transistors [J].
Berdebes, Dionisis ;
Low, Tony ;
Sui, Yang ;
Appenzeller, Joerg ;
Lundstrom, Mark S. .
IEEE TRANSACTIONS ON ELECTRON DEVICES, 2011, 58 (11) :3925-3932
[8]   MODELS FOR CONTACTS TO PLANAR DEVICES [J].
BERGER, HH .
SOLID-STATE ELECTRONICS, 1972, 15 (02) :145-&
[9]   Influence of metal contacts and charge inhomogeneity on transport properties of graphene near the neutrality point [J].
Blake, P. ;
Yang, R. ;
Morozov, S. V. ;
Schedin, F. ;
Ponomarenko, L. A. ;
Zhukov, A. A. ;
Nair, R. R. ;
Grigorieva, I. V. ;
Novoselov, K. S. ;
Geim, A. K. .
SOLID STATE COMMUNICATIONS, 2009, 149 (27-28) :1068-1071
[10]   Graphene-based liquid crystal device [J].
Blake, Peter ;
Brimicombe, Paul D. ;
Nair, Rahul R. ;
Booth, Tim J. ;
Jiang, Da ;
Schedin, Fred ;
Ponomarenko, Leonid A. ;
Morozov, Sergey V. ;
Gleeson, Helen F. ;
Hill, Ernie W. ;
Geim, Andre K. ;
Novoselov, Kostya S. .
NANO LETTERS, 2008, 8 (06) :1704-1708