Membrane Characterization Based on PEG Rejection and CFD Analysis

被引:2
作者
Baldasso, C. [1 ]
Pinto, S. I. S. [2 ]
Silveira, G. S. [1 ]
Marczak, L. D. F. [1 ]
Tessaro, I. C. [1 ]
Campos, J. B. L. M. [2 ]
Miranda, J. M. [2 ]
机构
[1] Univ Fed Rio Grande do Sul, Dept Engn Quim, Lab Separacao Membranas, Porto Alegre, RS, Brazil
[2] Univ Porto, Fac Engn, Dept Engn Quim, Ctr Estudos Fenomenos Transporte, P-4200465 Oporto, Portugal
关键词
experimental set-up; computational fluid dynamics; ultrafiltration; membrane characterization; solutions of PEG; CROSS-FLOW ULTRAFILTRATION; MASS-TRANSFER; ASYMMETRIC MEMBRANES; APPARENT SELECTIVITY; TRANSPORT-PROPERTIES; SEPARATION MEMBRANE; MACROMOLECULES; FLUX DECLINE; UF MEMBRANES; FRACTIONATION;
D O I
10.1080/01496395.2014.1001907
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Characterization of membrane pore size by experimental methods is usually done by the determination of the rejection of polymeric molecules having a range of sizes such as PEG. These experiments are affected by concentration polarization, which can lead to erroneous interpretation of the results, mainly because the concentration and the permeate flux change along the membrane surface. Additionally, experimental methods alone are insufficient to obtain the membrane pore size. To improve the current approach, numerical methods are used to understand mass transport limitations in rejection experiments and to predict the membrane pore size. In the current study, the results show that the ultrafiltration membrane has a MWCO of 20 kDa, different from the value set by the manufacturer (30 kDa). For the experimental conditions, concentration dependent viscosity and osmotic pressure do not influence the permeate flow rate or rejection. Moreover, the membrane pore size was found to be 2.59 nm. This value was determined comparing rejection values obtained by numerical and experimental results. Numerical analysis is also important to characterize the flow and mass transport in each point at membrane surface.
引用
收藏
页码:1823 / 1834
页数:12
相关论文
共 47 条
[1]   Numerical study of BSA ultrafiltration in the limiting flux regime - Effect of variable physical properties [J].
Afonso, A. ;
Miranda, J. M. ;
Campos, J. B. L. M. .
DESALINATION, 2009, 249 (03) :1139-1150
[2]   Application of CFD for simulation of a baffled tubular membrane [J].
Ahmed, Saber ;
Seraji, M. Taif ;
Jahedi, Jonaid ;
Hashib, M. A. .
CHEMICAL ENGINEERING RESEARCH & DESIGN, 2012, 90 (05) :600-608
[3]  
Babu PR, 2001, SEP PURIF TECHNOL, V24, P23
[4]   Development of an optimized dextran retention test for large pore size hollow fiber ultrafiltration membranes [J].
Bakhshayeshi, Meisam ;
Teella, Achyuta ;
Zhou, Hongyi ;
Olsen, Cathryn ;
Yuan, Wei ;
Zydney, Andrew L. .
JOURNAL OF MEMBRANE SCIENCE, 2012, 421 :32-38
[5]   Understanding dextran retention data for hollow fiber ultrafiltration membranes [J].
Bakhshayeshi, Meisam ;
Zhou, Hongyi ;
Olsen, Cathryn ;
Yuan, Wei ;
Zydney, Andrew L. .
JOURNAL OF MEMBRANE SCIENCE, 2011, 385 (1-2) :243-250
[6]   Ceramic membrane behavior in textile wastewater ultrafiltration [J].
Barredo-Damas, S. ;
Alcaina-Miranda, M. I. ;
Bes-Pia, A. ;
Iborra-Clar, M. I. ;
Iborra-Clar, A. ;
Mendoza-Roca, J. A. .
DESALINATION, 2010, 250 (02) :623-628
[7]  
Baudrup J., 1989, POLYM HDB
[8]   FLUID-MECHANICS AND CROSS-FLOW FILTRATION - SOME THOUGHTS [J].
BELFORT, G ;
NAGATA, N .
DESALINATION, 1985, 53 (1-3) :57-79
[9]   STEPS OF MEMBRANE BLOCKING IN FLUX DECLINE DURING PROTEIN MICROFILTRATION [J].
BOWEN, WR ;
CALVO, JI ;
HERNANDEZ, A .
JOURNAL OF MEMBRANE SCIENCE, 1995, 101 (1-2) :153-165
[10]  
Brans G., 2006, THESIS WAGENINGEN U