High energy density anodes using hybrid Li intercalation and plating mechanisms on natural graphite

被引:82
作者
Son, Yeonguk [1 ]
Lee, Taeyong [2 ]
Wen, Bo [1 ,3 ]
Ma, Jiyoung [2 ]
Jo, Changshin [1 ,4 ]
Cho, Yoon-Gyo [5 ]
Boies, Adam [1 ]
Cho, Jaephil [2 ]
De Volder, Michael [1 ]
机构
[1] Univ Cambridge, Dept Engn, 17 Charles Babbage Rd, Cambridge CB3 0FS, England
[2] Ulsan Natl Inst Sci & Technol UNIST, Dept Energy Engn, Sch Energy & Chem Engn, Ulsan 44919, South Korea
[3] Univ Cambridge, Cambridge Graphene Ctr, 9 JJ Thomson Ave, Cambridge CB3 0FA, England
[4] Chung Ang Univ, Sch Chem Engn & Mat Sci, Seoul 06974, South Korea
[5] Univ Calif San Diego, Dept Nanoengn, La Jolla, CA 92093 USA
基金
英国工程与自然科学研究理事会;
关键词
LITHIUM METAL ANODE; POUCH CELLS; CYCLE LIFE; BATTERIES; ELECTROLYTES;
D O I
10.1039/d0ee02230f
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Lithium plating on conventional graphite anodes in lithium-ion batteries is typically considered an undesirable side reaction, a safety hazard or a degradation mechanism. However, lithium plating and stripping allow for efficient energy storage, and therefore various new porous anode designs with tailored surface coatings and electrolyte systems have been proposed to achieve reversible Li plating and stripping. Unfortunately, these material designs often rely on highly porous plating scaffolds with an overall lower volumetric energy and power density than conventional graphite anodes. Herein, a novel anode design is presented which leverages the good volumetric performance of industrial graphite anodes and further enhances their capacity by allowing for a reversible Li plating on their surface. The latter is achieve by conformally coating them with a nanoscale lithiophilic Si coating. As a result, excellent volumetric energy densities of 656 mA h cm(-3)and gravimetric capacities of 551 mA h g(-1)are achieved, which are a clear improvement compared to the commercial graphite anode (app. 570 mA h cm(-3)and 360 mA h g(-1)respectively). Moreover, by carefully balancing the thickness of the Si layer and the plating capacity, a capacity retention close to 100% is achieved after 200 cycles in half cells. Overall, this approach leverages the advances in industrial graphite anode manufacturing while at the same time embracing the additional capacity offered by reversible plating and stripping of Li metal, resulting in full cells energy densities of 474 W h kg(-1)and 912 W h L-1, which is a step forward compared to previous Li metal and graphite anodes.
引用
收藏
页码:3723 / 3731
页数:9
相关论文
共 47 条
[1]   Transition of lithium growth mechanisms in liquid electrolytes [J].
Bai, Peng ;
Li, Ju ;
Brushett, Fikile R. ;
Bazant, Martin Z. .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (10) :3221-3229
[2]   2D MoS2 as an efficient protective layer for lithium metal anodes in high-performance Li-S batteries [J].
Cha, Eunho ;
Patel, Mumukshu D. ;
Park, Juhong ;
Hwang, Jeongwoon ;
Prasad, Vish ;
Cho, Kyeongjae ;
Choi, Wonbong .
NATURE NANOTECHNOLOGY, 2018, 13 (04) :337-+
[3]   Integration of Graphite and Silicon Anodes for the Commercialization of High-Energy Lithium-Ion Batteries [J].
Chae, Sujong ;
Choi, Seong-Hyeon ;
Kim, Namhyung ;
Sung, Jaekyung ;
Cho, Jaephil .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2020, 59 (01) :110-135
[4]   Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review [J].
Cheng, Xin-Bing ;
Zhang, Rui ;
Zhao, Chen-Zi ;
Zhang, Qiang .
CHEMICAL REVIEWS, 2017, 117 (15) :10403-10473
[5]   Gel/Solid Polymer Electrolytes Characterized by In Situ Gelation or Polymerization for Electrochemical Energy Systems [J].
Cho, Yoon-Gyo ;
Hwang, Chihyun ;
Cheong, Do Sol ;
Kim, Young-Soo ;
Song, Hyun-Kon .
ADVANCED MATERIALS, 2019, 31 (20)
[6]   Quantifying inactive lithium in lithium metal batteries [J].
Fang, Chengcheng ;
Li, Jinxing ;
Zhang, Minghao ;
Zhang, Yihui ;
Yang, Fan ;
Lee, Jungwoo Z. ;
Lee, Min-Han ;
Alvarado, Judith ;
Schroeder, Marshall A. ;
Yang, Yangyuchen ;
Lu, Bingyu ;
Williams, Nicholas ;
Ceja, Miguel ;
Yang, Li ;
Cai, Mei ;
Gu, Jing ;
Xu, Kang ;
Wang, Xuefeng ;
Meng, Ying Shirley .
NATURE, 2019, 572 (7770) :511-+
[7]   Lithium - Air Battery: Promise and Challenges [J].
Girishkumar, G. ;
McCloskey, B. ;
Luntz, A. C. ;
Swanson, S. ;
Wilcke, W. .
JOURNAL OF PHYSICAL CHEMISTRY LETTERS, 2010, 1 (14) :2193-2203
[8]   High electronic conductivity as the origin of lithium dendrite formation within solid electrolytes [J].
Han, Fudong ;
Westover, Andrew S. ;
Yue, Jie ;
Fan, Xiulin ;
Wang, Fei ;
Chi, Miaofang ;
Leonard, Donovan N. ;
Dudney, Nancyj ;
Wang, Howard ;
Wang, Chunsheng .
NATURE ENERGY, 2019, 4 (03) :187-196
[9]   Stable cycling of high-voltage lithium metal batteries in ether electrolytes [J].
Jiao, Shuhong ;
Ren, Xiaodi ;
Cao, Ruiguo ;
Engelhard, Mark H. ;
Liu, Yuzi ;
Hu, Dehong ;
Mei, Donghai ;
Zheng, Jianming ;
Zhao, Wengao ;
Li, Qiuyan ;
Liu, Ning ;
Adams, Brian D. ;
Ma, Cheng ;
Liu, Jun ;
Zhang, Ji-Guang ;
Xu, Wu .
NATURE ENERGY, 2018, 3 (09) :739-746
[10]   3D lithium metal embedded within lithiophilic porous matrix for stable lithium metal batteries [J].
Jin, Chengbin ;
Sheng, Ouwei ;
Luo, Jianmin ;
Yuan, Huadong ;
Fang, Cong ;
Zhang, Wenkui ;
Huang, Hui ;
Gan, Yongping ;
Xia, Yang ;
Liang, Chu ;
Zhang, Jun ;
Tao, Xinyong .
NANO ENERGY, 2017, 37 :177-186